Daniel N Streblow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5663683/publications.pdf

Version: 2024-02-01

86 papers

5,032 citations

36 h-index 95266 68 g-index

86 all docs 86 docs citations

86 times ranked 5835 citing authors

#	Article	IF	CITATIONS
1	Therapeutic and prophylactic treatment with a virus-specific antibody is highly effective in rodent models of Chikungunya infection and disease. Antiviral Research, 2022, 202, 105295.	4.1	4
2	Development of a next-generation chikungunya virus vaccine based on the HydroVax platform. PLoS Pathogens, 2022, 18, e1010695.	4.7	5
3	Blocking the IL-1 receptor reduces cardiac transplant ischemia and reperfusion injury and mitigates CMV-accelerated chronic rejection. American Journal of Transplantation, 2021, 21, 44-59.	4.7	7
4	CD34 ⁺ Hematopoietic Progenitor Cell Subsets Exhibit Differential Ability To Maintain Human Cytomegalovirus Latency and Persistence. Journal of Virology, 2021, 95, .	3.4	8
5	Macrophage depletion of CMV latently infected donor hearts ameliorates recipient accelerated chronic rejection. Transplant Infectious Disease, 2021, 23, e13514.	1.7	3
6	Antibody-Independent Quantification of Cytomegalovirus Virion Protein Incorporation Using HiBiT. Methods in Molecular Biology, 2021, 2244, 213-232.	0.9	1
7	Establishment of Monoclonal Antibody Standards for Quantitative Serological Diagnosis of SARS-CoV-2 in Low-Incidence Settings. Open Forum Infectious Diseases, 2021, 8, ofab061.	0.9	8
8	Cytomegaloviral determinants of CD8 ⁺ T cell programming and RhCMV/SIV vaccine efficacy. Science Immunology, 2021, 6, .	11.9	34
9	Targeting Chikungunya Virus Replication by Benzoannulene Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 4762-4786.	6.4	6
10	Non-replicating adenovirus based Mayaro virus vaccine elicits protective immune responses and cross protects against other alphaviruses. PLoS Neglected Tropical Diseases, 2021, 15, e0009308.	3.0	13
11	Human Cytomegalovirus Host Interactions: EGFR and Host Cell Signaling Is a Point of Convergence Between Viral Infection and Functional Changes in Infected Cells. Frontiers in Microbiology, 2021, 12, 660901.	3 . 5	6
12	Rat and human cytomegalovirus ORF116 encodes a virion envelope glycoprotein required for infectivity. Virology, 2021, 557, 23-33.	2.4	6
13	Identification of Quinolinones as Antivirals against Venezuelan Equine Encephalitis Virus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0024421.	3.2	5
14	Comparison of SARS-CoV-2 PCR-Based Detection Using Saliva or Nasopharyngeal Swab Specimens in Asymptomatic Populations. Microbiology Spectrum, 2021, 9, e0006221.	3.0	10
15	Pyrimidone inhibitors targeting Chikungunya Virus nsP3 macrodomain by fragment-based drug design. PLoS ONE, 2021, 16, e0245013.	2.5	16
16	Nonhuman Primate Models of Zika Virus Infection and Disease during Pregnancy. Viruses, 2021, 13, 2088.	3.3	12
17	Differential Type 1 IFN Gene Expression in CD14+ Placenta Cells Elicited by Zika Virus Infection During Pregnancy. Frontiers in Virology, 2021, 1 , .	1.4	3
18	Fetal Central Nervous System Derived Extracellular Vesicles: Potential for Non-invasive Tracking of Viral Mediated Fetal Brain Injury. Frontiers in Virology, 2021, 1 , .	1.4	1

#	Article	IF	Citations
19	Zika Virus Causes Acute and Chronic Prostatitis in Mice and Macaques. Journal of Infectious Diseases, 2020, 221, 1506-1517.	4.0	18
20	Rat Cytomegalovirus Virion-Associated Proteins R131 and R129 Are Necessary for Infection of Macrophages and Dendritic Cells. Pathogens, 2020, 9, 963.	2.8	1
21	The Differentiation of Human Cytomegalovirus Infected-Monocytes Is Required for Viral Replication. Frontiers in Cellular and Infection Microbiology, 2020, 10, 368.	3.9	26
22	Small Molecule Inhibitors Targeting Chikungunya Virus. Current Topics in Microbiology and Immunology, 2020, , $1.$	1.1	7
23	Human Cytomegalovirus Infection Suppresses CD34+ Progenitor Cell Engraftment in Humanized Mice. Microorganisms, 2020, 8, 525.	3.6	6
24	In vitro and in vivo characterization of a recombinant rhesus cytomegalovirus containing a complete genome. PLoS Pathogens, 2020, 16, e1008666.	4.7	20
25	Isolation and Detection of Zika Virus-Infected Rhesus Macaques Lymph Node Cells and Splenocytes. Methods in Molecular Biology, 2020, 2142, 197-213.	0.9	0
26	Title is missing!. , 2020, 16, e1008666.		0
27	Title is missing!. , 2020, 16, e1008666.		0
28	Title is missing!. , 2020, 16, e1008666.		0
29	Title is missing!. , 2020, 16, e1008666.		0
30	Risk of Zika microcephaly correlates with features of maternal antibodies. Journal of Experimental Medicine, 2019, 216, 2302-2315.	8.5	41
31	Enhancing safety of cytomegalovirus-based vaccine vectors by engaging host intrinsic immunity. Science Translational Medicine, 2019, 11, .	12.4	23
32	Studies on Dibenzylamines as Inhibitors of Venezuelan Equine Encephalitis Virus. ACS Infectious Diseases, 2019, 5, 2014-2028.	3.8	2
33	Human Cytomegalovirus US28 Ligand Binding Activity Is Required for Latency in CD34 ⁺ Hematopoietic Progenitor Cells and Humanized NSG Mice. MBio, 2019, 10, .	4.1	40
34	HCMV trimer- and pentamer-specific antibodies synergize for virus neutralization but do not correlate with congenital transmission. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3728-3733.	7.1	42
35	Src Family Kinase Inhibitors Block Translation of Alphavirus Subgenomic mRNAs. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	27
36	Human Cytomegalovirus Immediate Early 86-kDa Protein Blocks Transcription and Induces Degradation of the Immature Interleukin- $\hat{\Pi}^2$ Protein during Virion-Mediated Activation of the AIM2 Inflammasome. MBio, 2019, 10, .	4.1	40

#	Article	IF	Citations
37	Vaccine-Induced Skewing of T Cell Responses Protects Against Chikungunya Virus Disease. Frontiers in Immunology, 2019, 10, 2563.	4.8	11
38	Characterization of a live-attenuated HCMV-based vaccine platform. Scientific Reports, 2019, 9, 19236.	3.3	26
39	Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology. Nature Communications, 2018, 9, 263.	12.8	177
40	Emerging Alphaviruses Are Sensitive to Cellular States Induced by a Novel Small-Molecule Agonist of the STING Pathway. Journal of Virology, $2018, 92, .$	3.4	46
41	Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nature Medicine, 2018, 24, 1104-1107.	30.7	85
42	In Utero Administration of Drugs Targeting Microglia Improves the Neurodevelopmental Outcome Following Cytomegalovirus Infection of the Rat Fetal Brain. Frontiers in Cellular Neuroscience, 2018, 12, 55.	3.7	8
43	A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. MBio, 2017, 8, .	4.1	38
44	Human Cytomegalovirus Induces Cellular and Humoral Virus-specific Immune Responses in Humanized BLT Mice. Scientific Reports, 2017, 7, 937.	3.3	39
45	Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathogens, 2017, 13, e1006219.	4.7	194
46	Therapeutic administration of a recombinant human monoclonal antibody reduces the severity of chikungunya virus disease in rhesus macaques. PLoS Neglected Tropical Diseases, 2017, 11, e0005637.	3.0	55
47	Cross-Species Rhesus Cytomegalovirus Infection of Cynomolgus Macaques. PLoS Pathogens, 2016, 12, e1006014.	4.7	35
48	Animal Models of Chikungunya Virus Infection and Disease. Journal of Infectious Diseases, 2016, 214, S482-S487.	4.0	54
49	Complex Interplay of the <i>UL136</i> Isoforms Balances Cytomegalovirus Replication and Latency. MBio, 2016, 7, e01986.	4.1	45
50	Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation. PLoS ONE, 2016, 11, e0160176.	2.5	29
51	Dysregulated TGF- \hat{I}^2 Production Underlies the Age-Related Vulnerability to Chikungunya Virus. PLoS Pathogens, 2016, 12, e1005891.	4.7	48
52	Nonhuman Primate Models of Chikungunya Virus Infection and Disease (CHIKV NHP Model). Pathogens, 2015, 4, 662-681.	2.8	35
53	Characterization of a Novel Human-Specific STING Agonist that Elicits Antiviral Activity Against Emerging Alphaviruses. PLoS Pathogens, 2015, 11, e1005324.	4.7	103
54	Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway. PLoS Pathogens, 2015, 11, e1004881.	4.7	85

#	Article	IF	CITATIONS
55	Chikungunya Viruses That Escape Monoclonal Antibody Therapy Are Clinically Attenuated, Stable, and Not Purified in Mosquitoes. Journal of Virology, 2014, 88, 8213-8226.	3.4	67
56	HCMV Infection of Humanized Mice after Transplantation of G-CSF–Mobilized Peripheral Blood Stem Cells from HCMV-Seropositive Donors. Biology of Blood and Marrow Transplantation, 2014, 20, 132-135.	2.0	31
57	Fluorescence-Based Laser Capture Microscopy Technology Facilitates Identification of Critical In Vivo Cytomegalovirus Transcriptional Programs. Methods in Molecular Biology, 2014, 1119, 217-237.	0.9	4
58	Chikungunya Virus Infection Results in Higher and Persistent Viral Replication in Aged Rhesus Macaques Due to Defects in Anti-Viral Immunity. PLoS Neglected Tropical Diseases, 2013, 7, e2343.	3.0	95
59	Cytomegalovirus CC Chemokine Promotes Immune Cell Migration. Journal of Virology, 2012, 86, 11833-11844.	3.4	32
60	The role of cytomegalovirus in angiogenesis. Virus Research, 2011, 157, 204-211.	2.2	62
61	Simian varicella virus gene expression during acute and latent infection of rhesus macaques. Journal of NeuroVirology, 2011, 17, 600-612.	2.1	22
62	Cytomegalovirus MicroRNA Expression Is Tissue Specific and Is Associated with Persistence. Journal of Virology, 2011, 85, 378-389.	3.4	41
63	Chikungunya Virus Induces IPS-1-Dependent Innate Immune Activation and Protein Kinase R-Independent Translational Shutoff. Journal of Virology, 2011, 85, 606-620.	3.4	113
64	A Novel Human Cytomegalovirus Locus Modulates Cell Type-Specific Outcomes of Infection. PLoS Pathogens, 2011, 7, e1002444.	4.7	140
65	HCMV pUS28 initiates pro-migratory signaling via activation of Pyk2 kinase. Herpesviridae, 2010, 1, 2.	2.7	24
66	Granulocyte-Colony Stimulating Factor Reactivates Human Cytomegalovirus in a Latently Infected Humanized Mouse Model. Cell Host and Microbe, 2010, 8, 284-291.	11.0	116
67	Differential Ligand Binding to a Human Cytomegalovirus Chemokine Receptor Determines Cell Type–Specific Motility. PLoS Pathogens, 2009, 5, e1000304.	4.7	59
68	Rat cytomegalovirus infection depletes MHC II in bone marrow derived dendritic cells. Virology, 2009, 388, 78-90.	2.4	20
69	Human Cytomegalovirus US28: A Functionally Selective Chemokine Binding Receptor. Infectious Disorders - Drug Targets, 2009, 9, 548-556.	0.8	38
70	Human Cytomegalovirus Secretome Contains Factors That Induce Angiogenesis and Wound Healing. Journal of Virology, 2008, 82, 6524-6535.	3.4	100
71	West Nile Virus Entry Requires Cholesterol-Rich Membrane Microdomains and Is Independent of $\hat{l}\pm v\hat{l}^2$ 3 Integrin. Journal of Virology, 2008, 82, 5212-5219.	3.4	129
72	Rat Cytomegalovirus Gene Expression in Cardiac Allograft Recipients Is Tissue Specific and Does Not Parallel the Profiles Detected In Vitro. Journal of Virology, 2007, 81, 3816-3826.	3.4	27

#	Article	IF	CITATIONS
73	Acceleration of allograft failure by cytomegalovirus. Current Opinion in Immunology, 2007, 19, 577-582.	5.5	113
74	Focal Adhesion Kinase Is Critical for Entry of Kaposi's Sarcoma-Associated Herpesvirus into Target Cells. Journal of Virology, 2006, 80, 1167-1180.	3.4	75
75	Rat Cytomegalovirusâ€Accelerated Transplant Vascular Sclerosis Is Reduced with Mutation of the Chemokineâ€Receptor R33. American Journal of Transplantation, 2005, 5, 436-442.	4.7	57
76	Mouse Cytomegalovirus M33 Is Necessary and Sufficient in Virus-Induced Vascular Smooth Muscle Cell Migration. Journal of Virology, 2005, 79, 10788-10795.	3.4	42
77	Human Cytomegalovirus-Encoded G Protein-Coupled Receptor US28 Mediates Smooth Muscle Cell Migration through Gα12. Journal of Virology, 2004, 78, 8382-8391.	3.4	75
78	Identification of Proteins in Human Cytomegalovirus (HCMV) Particles: the HCMV Proteome. Journal of Virology, 2004, 78, 10960-10966.	3.4	521
79	Models of HCMV latency and reactivation. Trends in Microbiology, 2003, 11, 293-295.	7.7	40
80	Differential regulation of cell motility and invasion by FAK. Journal of Cell Biology, 2003, 160, 753-767.	5.2	484
81	Cytomegalovirus-Mediated Upregulation of Chemokine Expression Correlates with the Acceleration of Chronic Rejection in Rat Heart Transplants. Journal of Virology, 2003, 77, 2182-2194.	3.4	86
82	Human Cytomegalovirus Chemokine Receptor US28-induced Smooth Muscle Cell Migration Is Mediated by Focal Adhesion Kinase and Src. Journal of Biological Chemistry, 2003, 278, 50456-50465.	3.4	90
83	Elimination of donor-specific alloreactivity prevents cytomegalovirus-accelerated chronic rejection in rat small bowel and heart transplants1. Transplantation, 2002, 73, 679-688.	1.0	41
84	Do Pathogens Accelerate Atherosclerosis?. Journal of Nutrition, 2001, 131, 2798S-2804S.	2.9	124
85	Reactivation of Latent Human Cytomegalovirus in CD14 + Monocytes Is Differentiation Dependent. Journal of Virology, 2001, 75, 7543-7554.	3.4	208
86	The Human Cytomegalovirus Chemokine Receptor US28 Mediates Vascular Smooth Muscle Cell Migration. Cell, 1999, 99, 511-520.	28.9	402