Fei Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5663564/publications.pdf

Version: 2024-02-01

96 papers

2,865 citations

32 h-index 197818 49 g-index

96 all docs 96 docs citations

96 times ranked 2065 citing authors

#	Article	IF	CITATIONS
1	Transition to Digitalized Paradigms for Security Control and Decentralized Electricity Market. Proceedings of the IEEE, 2023, 111, 744-761.	21.3	5
2	Privacy-Preserving Probabilistic Voltage Forecasting in Local Energy Communities. IEEE Transactions on Smart Grid, 2023, 14, 798-809.	9.0	12
3	Towards Optimal Coordination Between Regional Groups: HVDC Supplementary Power Control. IEEE Transactions on Power Systems, 2022, 37, 402-415.	6.5	9
4	Probabilistic Scheduling of UFLS to Secure Credible Contingencies in Low Inertia Systems. IEEE Transactions on Power Systems, 2022, 37, 2693-2703.	6.5	10
5	Probabilistic Day-Ahead Inertia Forecasting. IEEE Transactions on Power Systems, 2022, 37, 3738-3746.	6.5	8
6	Priority-Driven Self-Optimizing Power Control Scheme for Interlinking Converters of Hybrid AC/DC Microgrid Clusters in Decentralized Manner. IEEE Transactions on Power Electronics, 2022, 37, 5970-5983.	7.9	16
7	A resilience-oriented centralised-to-decentralised framework for networked microgrids management. Applied Energy, 2022, 308, 118234.	10.1	26
8	Consumer-centric decarbonization framework using Stackelberg game and Blockchain. Applied Energy, 2022, 309, 118384.	10.1	14
9	Bi-level robust scheduling for multi-terminal DC distribution networks considering uncertainties of loads and renewable energies. International Journal of Electrical Power and Energy Systems, 2022, 137, 107899.	5.5	1
10	Benchmarking Explanatory Models for Inertia Forecasting using Public Data of the Nordic Area. , 2022, , .		2
11	Resilient Secondary Voltage Control of Islanded Microgrids: An ESKBF-Based Distributed Fast Terminal Sliding Mode Control Approach. IEEE Transactions on Power Systems, 2021, 36, 1059-1070.	6.5	45
12	Stealthy MTD Against Unsupervised Learning-Based Blind FDI Attacks in Power Systems. IEEE Transactions on Information Forensics and Security, 2021, 16, 1275-1287.	6.9	26
13	Eventâ€triggered distributed model predictive control for resilient voltage control of an islanded microgrid. International Journal of Robust and Nonlinear Control, 2021, 31, 1979-2000.	3.7	30
14	Conditions for Regional Frequency Stability in Power System Schedulingâ€"Part I: Theory. IEEE Transactions on Power Systems, 2021, 36, 5558-5566.	6.5	31
15	Conditions for Regional Frequency Stability in Power System Schedulingâ€"Part II: Application to Unit Commitment. IEEE Transactions on Power Systems, 2021, 36, 5567-5577.	6.5	18
16	Market Value of Differentially-Private Smart Meter Data., 2021,,.		2
17	Enhanced cyberâ€physical security using attackâ€resistant cyber nodes and eventâ€triggered moving target defence. IET Cyber-Physical Systems: Theory and Applications, 2021, 6, 12-26.	3.3	4
18	Estimation of Time-varying Frequency and its Rate of Change in Low-inertia Power Systems., 2021,,.		0

#	Article	IF	Citations
19	A Cyber-Secured Operation for Water-Energy Nexus. IEEE Transactions on Power Systems, 2021, 36, 3105-3117.	6.5	12
20	Short Circuit Current Constrained UC in High IBG-Penetrated Power Systems. IEEE Transactions on Power Systems, 2021, 36, 3776-3785.	6.5	11
21	Frequency-Constrained Stochastic Planning Towards a High Renewable Target Considering Frequency Response Support From Wind Power. IEEE Transactions on Power Systems, 2021, 36, 4632-4644.	6.5	41
22	Evaluating the Dispatchable Capacity of Base Station Backup Batteries in Distribution Networks. IEEE Transactions on Smart Grid, 2021, 12, 3966-3979.	9.0	40
23	Decentralized Data-Driven Load Restoration in Coupled Transmission and Distribution System With Wind Power. IEEE Transactions on Power Systems, 2021, 36, 4435-4444.	6.5	21
24	Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems. Renewable and Sustainable Energy Reviews, 2021, 147, 111176.	16.4	46
25	Charging Load Pattern Extraction for Residential Electric Vehicles: A Training-Free Nonintrusive Method. IEEE Transactions on Industrial Informatics, 2021, 17, 7028-7039.	11.3	17
26	Data-Driven Multi-Energy Investment and Management Under Earthquakes. IEEE Transactions on Industrial Informatics, 2021, 17, 6939-6950.	11.3	8
27	Cost and low-carbon competitiveness of electrolytic hydrogen in China. Energy and Environmental Science, 2021, 14, 4868-4881.	30.8	34
28	Frequency-Constrained Resilient Scheduling of Microgrid: A Distributionally Robust Approach. IEEE Transactions on Smart Grid, 2021, 12, 4914-4925.	9.0	30
29	Interval power flow calculation algorithm for multiâ€terminal dc distribution networks considering distributed generation output uncertainties. IET Generation, Transmission and Distribution, 2021, 15, 986-996.	2.5	6
30	Cyber-Physical Disaster Response of Power Supply Using a Centralised-to-Distributed Framework. , 2021, , .		1
31	Fast Frequency Response From Smart Induction Motor Variable Speed Drives. IEEE Transactions on Power Systems, 2020, 35, 997-1008.	6.5	23
32	Interval Overvoltage Risk Based PV Hosting Capacity Evaluation Considering PV and Load Uncertainties. IEEE Transactions on Smart Grid, 2020, 11, 2709-2721.	9.0	43
33	Special Issue on Advanced Approaches and Applications for Electric Vehicle Charging Demand Management. IEEE Transactions on Industry Applications, 2020, 56, 5682-5683.	4.9	2
34	Stability-Constrained Power System Scheduling: A Review. IEEE Access, 2020, 8, 219331-219343.	4.2	12
35	Technical Review on Advanced Approaches for Electric Vehicle Charging Demand Management, Part II: Applications in Transportation System Coordination and Infrastructure Planning. IEEE Transactions on Industry Applications, 2020, 56, 5695-5703.	4.9	55
36	Technical Review on Advanced Approaches for Electric Vehicle Charging Demand Management, Part I: Applications in Electric Power Market and Renewable Energy Integration. IEEE Transactions on Industry Applications, 2020, 56, 5684-5694.	4.9	63

#	Article	IF	CITATIONS
37	Value of Point-of-Load Voltage Control for Enhanced Frequency Response in Future GB Power System. IEEE Transactions on Smart Grid, 2020, 11, 4938-4948.	9.0	4
38	Optimal Portfolio of Distinct Frequency Response Services in Low-Inertia Systems. IEEE Transactions on Power Systems, 2020, 35, 4459-4469.	6.5	40
39	Towards Optimal System Scheduling With Synthetic Inertia Provision From Wind Turbines. IEEE Transactions on Power Systems, 2020, 35, 4056-4066.	6.5	77
40	Price Incentive-Based Charging Navigation Strategy for Electric Vehicles. IEEE Transactions on Industry Applications, 2020, 56, 5762-5774.	4.9	52
41	Investment decision optimization for distribution network planning with correlation constraint. International Transactions on Electrical Energy Systems, 2020, 30, e12323.	1.9	7
42	Hierarchical service restoration scheme for active distribution networks based on ADMM. International Journal of Electrical Power and Energy Systems, 2020, 118, 105809.	5.5	14
43	A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1243-1254.	5.8	127
44	Pricing inertia and Frequency Response with diverse dynamics in a Mixed-Integer Second-Order Cone Programming formulation. Applied Energy, 2020, 260, 114334.	10.1	28
45	An optimal modal coordination strategy based on modal superposition theory to mitigate low frequency oscillation in FCWG penetrated power systems. International Journal of Electrical Power and Energy Systems, 2020, 120, 105975.	5.5	17
46	LSTM autoâ€encoder based representative scenario generation method for hybrid hydroâ€PV power system. IET Generation, Transmission and Distribution, 2020, 14, 5935-5943.	2.5	16
47	Synthetic inertial control of wind farm with BESS based on model predictive control. IET Renewable Power Generation, 2020, 14, 2447-2455.	3.1	15
48	Role and value of flexibility in facilitating cost-effective energy system decarbonisation. Progress in Energy, 2020, 2, 042001.	10.9	35
49	Modeling Frequency Dynamics in Unit Commitment With a High Share of Renewable Energy. IEEE Transactions on Power Systems, 2020, 35, 4383-4395.	6.5	125
50	Modelling of Dynamic Line Rating in System Scheduling: A MISOCP Formulation. , 2020, , .		1
51	Value of Fleet Vehicle to Grid in Providing Transmission System Operator Services. , 2020, , .		3
52	Reliabilityâ€oriented optimal planning of charging stations in electricity–transportation coupled networks. IET Renewable Power Generation, 2020, 14, 3690-3698.	3.1	7
53	Simultaneous Scheduling of Multiple Frequency Services in Stochastic Unit Commitment. IEEE Transactions on Power Systems, 2019, 34, 3858-3868.	6.5	111
54	Electric vehicle charging in smart grid: A spatial-temporal simulation method. Energy, 2019, 189, 116221.	8.8	45

#	Article	IF	Citations
55	Multi-objective optimal allocation of distributed generations under uncertainty based on D-S evidence theory and affine arithmetic. International Journal of Electrical Power and Energy Systems, 2019, 112, 70-82.	5.5	38
56	Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications. Applied Energy, 2019, 242, 1396-1406.	10.1	59
57	Clustering-Based Residential Baseline Estimation: A Probabilistic Perspective. IEEE Transactions on Smart Grid, 2019, 10, 6014-6028.	9.0	62
58	Assessment of Frequency Support from Wind Turbines under Alternative Control Schemes. , 2019, , .		0
59	Data-Driven Representative Day Selection for Investment Decisions: A Cost-Oriented Approach. IEEE Transactions on Power Systems, 2019, 34, 2925-2936.	6.5	40
60	Whole-System Assessment of the Benefits of Integrated Electricity and Heat System. IEEE Transactions on Smart Grid, 2019, 10, 1132-1145.	9.0	59
61	Economic assessment of alternative heat decarbonisation strategies through coordinated operation with electricity system – UK case study. Applied Energy, 2018, 222, 79-91.	10.1	38
62	An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources. Energy, 2018, 145, 871-885.	8.8	44
63	An affine arithmetic-based multi-objective optimization method for energy storage systems operating in active distribution networks with uncertainties. Applied Energy, 2018, 223, 215-228.	10.1	39
64	Understanding the Benefits of Dynamic Line Rating Under Multiple Sources of Uncertainty. IEEE Transactions on Power Systems, 2018, 33, 3306-3314.	6.5	52
65	Quantifying the Potential Economic Benefits of Flexible Industrial Demand in the European Power System. IEEE Transactions on Industrial Informatics, 2018, 14, 5123-5132.	11.3	20
66	Role and Benefits of Flexible Thermostatically Controlled Loads in Future Low-Carbon Systems. IEEE Transactions on Smart Grid, 2018, 9, 5067-5079.	9.0	42
67	Tracing harmonic contributions of multiple distributed generations in distribution systems with uncertainty. International Journal of Electrical Power and Energy Systems, 2018, 95, 585-591.	5.5	25
68	Optimal Scheduling of Frequency Services Considering a Variable Largest-Power-Infeed-Loss., 2018,,.		3
69	Assessment of Future Whole-System Value of Large-Scale Pumped Storage Plants in Europe. Energies, 2018, 11, 246.	3.1	16
70	A system operator's utility function for the frequency response market. Applied Energy, 2018, 231, 562-569.	10.1	26
71	Challenges on primary frequency control and potential solution from EVs in the future GB electricity system. Applied Energy, 2017, 194, 353-362.	10.1	61
72	Full Stochastic Scheduling for Low-Carbon Electricity Systems. IEEE Transactions on Automation Science and Engineering, 2017, 14, 461-470.	5.2	34

#	Article	IF	CITATIONS
73	Opportunities for Energy Storage: Assessing Whole-System Economic Benefits of Energy Storage in Future Electricity Systems. IEEE Power and Energy Magazine, 2017, 15, 32-41.	1.6	71
74	Optimal Allocation of ESSs for Mitigating Fluctuation in Active Distribution Network. Energy Procedia, 2017, 142, 3572-3577.	1.8	6
75	Optimization of Heat Sector Decarbonization Strategy through Coordinated Operation with Electricity System. Energy Procedia, 2017, 142, 2858-2863.	1.8	4
76	Economic value of inertia in low-carbon power systems. , 2017, , .		5
77	Provision of ancillary services in future low-carbon UK electricity system. , 2017, , .		8
78	Business case for distributed energy storage. CIRED - Open Access Proceedings Journal, 2017, 2017, 1605-1608.	0.1	6
79	Impact of dynamic line rating with forecast error on the scheduling of reserve service. , 2016, , .		1
80	Commercial strategy for operating energy storage in supporting integration of renewable generation. , $2016, , .$		0
81	Stochastic scheduling with inertia-dependent fast frequency response requirements. , 2016, , .		3
82	Value of thermostatic loads in future low-carbon Great Britain system. , 2016, , .		10
83	Quantitative evaluation of uncertainty mitigation by ESS via complex affine distribution power flow. , 2016, , .		1
84	Challenges of Primary Frequency Control and Benefits of Primary Frequency Response Support from Electric Vehicles. Energy Procedia, 2016, 88, 985-990.	1.8	9
85	Business cases for energy storage with multiple service provision. Journal of Modern Power Systems and Clean Energy, 2016, 4, 615-625.	5.4	32
86	Stochastic Scheduling With Inertia-Dependent Fast Frequency Response Requirements. IEEE Transactions on Power Systems, 2016, 31, 1557-1566.	6.5	235
87	Assessment of the Role and Value of Frequency Response Support From Wind Plants. IEEE Transactions on Sustainable Energy, 2016, 7, 586-595.	8.8	123
88	Benefits of flexibility from smart electrified transportation and heating in the future UK electricity system. Applied Energy, 2016, 167, 420-431.	10.1	68
89	Evaluation of Synthetic Inertia Provision from Wind Plants. , 2015, , .		11
90	Potential value of energy storage in the UK electricity system. Proceedings of Institution of Civil Engineers: Energy, 2015, 168, 107-117.	0.6	10

#	Article	IF	CITATION
91	Benefits of Demand-Side Response in Providing Frequency Response Service in the Future GB Power System. Frontiers in Energy Research, 2015, 3, .	2.3	41
92	Uncertainty Tracing of Distributed Generations via Complex Affine Arithmetic Based Unbalanced Three-Phase Power Flow. IEEE Transactions on Power Systems, 2015, 30, 3053-3062.	6.5	73
93	Improved Interval Optimization Method Based on Differential Evolution for Microgrid Economic Dispatch. Electric Power Components and Systems, 2015, 43, 1882-1890.	1.8	22
94	Affine Arithmetic-based DC Power Flow for Automatic Contingency Selection with Consideration of Load and Generation Uncertainties. Electric Power Components and Systems, 2014, 42, 852-860.	1.8	13
95	Assessment of the value of plant flexibility in low carbon energy system. , 2014, , .		4
96	Distributed Secondary Control Strategy Against Bounded FDI Attacks for Microgrid With Layered Communication Network. Frontiers in Energy Research, 0, 10, .	2.3	3