
Michael R Kanost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5663084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superoxide dismutase 6 is required during metamorphosis for the development of properly movable legs in Tribolium castaneum. Scientific Reports, 2022, 12, 6900.	1.6	0
2	Phenotypic analyses, protein localization, and bacteriostatic activity of Drosophila melanogaster transferrin-1. Insect Biochemistry and Molecular Biology, 2022, 147, 103811.	1.2	5
3	Phylogenetic and sequence analyses of insect transferrins suggest that only <i>transferrin 1</i> has a role in iron homeostasis. Insect Science, 2021, 28, 495-508.	1.5	12
4	Structural insight into the novel ironâ€coordination and domain interactions of transferrinâ€1 from a model insect, <i>Manduca sexta</i> . Protein Science, 2021, 30, 408-422.	3.1	9
5	cDNA Cloning and Partial Characterization of the DJ-1 Gene from Tribolium castaneum. Antioxidants, 2021, 10, 1970.	2.2	0
6	Inhibition of immune pathway-initiating hemolymph protease-14 by Manduca sexta serpin-12, a conserved mechanism for the regulation of melanization and Toll activation in insects. Insect Biochemistry and Molecular Biology, 2020, 116, 103261.	1.2	22
7	Iron binding and release properties of transferrin-1 from Drosophila melanogaster and Manduca sexta: Implications for insect iron homeostasis. Insect Biochemistry and Molecular Biology, 2020, 125, 103438.	1.2	16
8	Changes in composition and levels of hemolymph proteins during metamorphosis of Manduca sexta. Insect Biochemistry and Molecular Biology, 2020, 127, 103489.	1.2	11
9	Hemolymph protease-5 links the melanization and Toll immune pathways in the tobacco hornworm, <i>Manduca sexta</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23581-23587.	3.3	36
10	Peptides based on the reactive center loop of Manduca sexta serpin-3 block its protease inhibitory function. Scientific Reports, 2020, 10, 11497.	1.6	1
11	Comparative analysis of seven types of superoxide dismutases for their ability to respond to oxidative stress in Bombyx mori. Scientific Reports, 2019, 9, 2170.	1.6	24
12	Development of a new method for collecting hemolymph and measuring phenoloxidase activity in Tribolium castaneum. BMC Research Notes, 2019, 12, 7.	0.6	29
13	Investigation of an antifungal peptide, Diapausin, from Manduca sexta. FASEB Journal, 2019, 33, 800.2.	0.2	1
14	Expression and Characterization of <i>Manduca sexta</i> Stress Responsive Peptide-1; An Inducer of Antimicrobial Peptide Synthesis. Biochemistry and Molecular Biology, 2019, 4, 42.	0.2	1
15	Self-Assembled Coacervates of Chitosan and an Insect Cuticle Protein Containing a Rebers–Riddiford Motif. Biomacromolecules, 2018, 19, 2391-2400.	2.6	9
16	The Manduca sexta serpinome: Analysis of serpin genes and proteins in the tobacco hornworm. Insect Biochemistry and Molecular Biology, 2018, 102, 21-30.	1.2	24
17	Manduca sexta serpin-12 controls the prophenoloxidase activation system in larval hemolymph. Insect Biochemistry and Molecular Biology, 2018, 99, 27-36.	1.2	16
18	A Biochemical and Structural Look into the Functional Role of Transferrin in D. melanogaster. FASEB Journal, 2018, 32, 652.39.	0.2	1

#	Article	IF	CITATIONS
19	Identification and characterization of serpin genes in <i>Manduca sexta</i> . FASEB Journal, 2018, 32, .	0.2	Ο
20	Characterization of Transferrinâ€1 from <i>Drosophila melanogaster</i> . FASEB Journal, 2018, 32, 538.10.	0.2	0
21	The immune properties of Manduca sexta transferrin. Insect Biochemistry and Molecular Biology, 2017, 81, 1-9.	1.2	29
22	Serpins in arthropod biology. Seminars in Cell and Developmental Biology, 2017, 62, 105-119.	2.3	121
23	Insect Proteases â ⁻ †., 2017, , .		Ο
24	Superoxide dismutase 2 knockdown leads to defects in locomotor activity, sensitivity to paraquat, and increased cuticle pigmentation in Tribolium castaneum. Scientific Reports, 2016, 6, 29583.	1.6	21
25	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	1.2	154
26	Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta. Developmental and Comparative Immunology, 2016, 61, 258-268.	1.0	30
27	Characterization of the Secondary Structure of CP30, a Highly Repetitive Ampholytic Protein in Beetle Elytral Cuticle. Macromolecular Symposia, 2015, 358, 212-216.	0.4	Ο
28	Structural features, evolutionary relationships, and transcriptional regulation of C-type lectin-domain proteins in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 75-85.	1.2	65
29	Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 100-113.	1.2	60
30	A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 23-37.	1.2	43
31	Overview of chitin metabolism enzymes in Manduca sexta: Identification, domain organization, phylogenetic analysis and gene expression. Insect Biochemistry and Molecular Biology, 2015, 62, 114-126.	1.2	95
32	Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 38-50.	1.2	44
33	Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity. Insect Biochemistry and Molecular Biology, 2015, 59, 58-71.	1.2	29
34	Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt. Scientific Reports, 2015, 5, 10484.	1.6	67
35	Preface. Insect Biochemistry and Molecular Biology, 2015, 62, 1.	1.2	1
36	Loss of function of the yellow-e gene causes dehydration-induced mortality of adult Tribolium castaneum. Developmental Biology, 2015, 399, 315-324.	0.9	53

#	Article	IF	CITATIONS
37	Structural and Inhibitory Effects of Hinge Loop Mutagenesis in Serpin-2 from the Malaria Vector Anopheles gambiae. Journal of Biological Chemistry, 2015, 290, 2946-2956.	1.6	7
38	Initiating protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13856-13861.	3.3	52
39	Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochemistry and Molecular Biology, 2015, 62, 127-141.	1.2	88
40	Clip-domain serine proteases as immune factors in insect hemolymph. Current Opinion in Insect Science, 2015, 11, 47-55.	2.2	194
41	Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 51-63.	1.2	82
42	A Multicopper Oxidase-Related Protein Is Essential for Insect Viability, Longevity and Ovary Development. PLoS ONE, 2014, 9, e111344.	1.1	14
43	Self-association of an Insect β-1,3-Clucan Recognition Protein Upon Binding Laminarin Stimulates Prophenoloxidase Activation as an Innate Immune Response. Journal of Biological Chemistry, 2014, 289, 28399-28410.	1.6	32
44	Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle of Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2014, 53, 22-29.	1.2	76
45	Protein selfâ€association of Nâ€terminal domain of βâ€1,3â€glucan recognition protein upon binding to βâ€1,3â€glucan stimulates the prophenoloxidase activation in Manduca sexta (1007.4). FASEB Journal, 2014, 28, 1007.4.	0.2	0
46	An Initial Event in the Insect Innate Immune Response: Structural and Biological Studies of Interactions between β-1,3-Clucan and the N-Terminal Domain of β-1,3-Clucan Recognition Protein. Biochemistry, 2013, 52, 161-170.	1.2	27
47	Manduca sexta serpin-7, a putative regulator of hemolymph prophenoloxidase activation. Insect Biochemistry and Molecular Biology, 2013, 43, 555-561.	1.2	58
48	Tribolium castaneum as a Model for High-Throughput RNAi Screening. Advances in Biochemical Engineering/Biotechnology, 2013, 136, 163-178.	0.6	17
49	Formation of Rigid, Non-Flight Forewings (Elytra) of a Beetle Requires Two Major Cuticular Proteins. PLoS Genetics, 2012, 8, e1002682.	1.5	68
50	Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13337-13342.	3.3	62
51	Proteomic and Transcriptomic Analyses of Rigid and Membranous Cuticles and Epidermis from the Elytra and Hindwings of the Red Flour Beetle, <i>Tribolium castaneum</i> . Journal of Proteome Research, 2012, 11, 269-278.	1.8	76
52	Kinetic properties of alternatively spliced isoforms of laccase-2 from Tribolium castaneum and Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2012, 42, 193-202.	1.2	24
53	Insect Proteases. , 2012, , 346-364.		13
54	Identification of plasma proteinase complexes with serpin-3 in Manduca sexta. Insect Biochemistry and Molecular Biology, 2012, 42, 946-955.	1.2	39

#	Article	IF	CITATIONS
55	Redox potentials, laccase oxidation, and antilarval activities of substituted phenols. Bioorganic and Medicinal Chemistry, 2012, 20, 1679-1689.	1.4	15
56	Multicopper Oxidase-3 Is a Laccase Associated with the Peritrophic Matrix of Anopheles gambiae. PLoS ONE, 2012, 7, e33985.	1.1	31
57	Mechanical Properties of the Beetle Elytron, a Biological Composite Material. Biomacromolecules, 2011, 12, 321-335.	2.6	68
58	Serpin-1 splicing isoform J inhibits the proSpÃæle-activating proteinase HP8 to regulate expression of antimicrobial hemolymph proteins in Manduca sexta. Developmental and Comparative Immunology, 2011, 35, 135-141.	1.0	54
59	Cuticle tanning in Tribolium castaneum. Entomological Research, 2011, 41, 293-293.	0.6	1
60	RNAi-based functional analysis of yellow-e in Tribolium castaneum. Entomological Research, 2011, 41, 296-296.	0.6	0
61	Two Major Structural Proteins Are Required for Rigid Adult Cuticle Formation in the Red Flour Beetle, Tribolium castaneum. Entomological Research, 2011, 41, 297-297.	0.6	Ο
62	RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 2011, 57, 231-245.	0.9	729
63	Characterization of a regulatory unit that controls melanization and affects longevity of mosquitoes. Cellular and Molecular Life Sciences, 2011, 68, 1929-1939.	2.4	110
64	Crystal structure of native <i>Anopheles gambiae</i> serpinâ€2, a negative regulator of melanization in mosquitoes. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1999-2003.	1.5	11
65	Mechanical properties of elytra from Tribolium castaneum wild-type and body color mutant strains. Journal of Insect Physiology, 2010, 56, 1901-1906.	0.9	29
66	Proteolytic activation and function of the cytokine SpÃæle in the innate immune response of a lepidopteran insect, <i>Manducaâ€∫sexta</i> . FEBS Journal, 2010, 277, 148-162.	2.2	105
67	Immunity in Lepidopteran Insects. Advances in Experimental Medicine and Biology, 2010, 708, 181-204.	0.8	229
68	Analysis of Mutually Exclusive Alternatively Spliced Serpin-1 Isoforms and Identification of Serpin-1 Proteinase Complexes in Manduca sexta Hemolymph. Journal of Biological Chemistry, 2010, 285, 29642-29650.	1.6	24
69	Identification, mRNA expression and functional analysis of several yellow family genes in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2010, 40, 259-266.	1.2	72
70	Insect multicopper oxidases: Diversity, properties, and physiological roles. Insect Biochemistry and Molecular Biology, 2010, 40, 179-188.	1.2	109
71	Model reactions for insect cuticle sclerotization: Participation of amino groups in the cross-linking of Manduca sexta cuticle protein MsCP36. Insect Biochemistry and Molecular Biology, 2010, 40, 252-258.	1.2	29
72	Manduca sexta serpin-5 regulates prophenoloxidase activation and the Toll signaling pathway by inhibiting hemolymph proteinase HP6. Insect Biochemistry and Molecular Biology, 2010, 40, 683-689.	1.2	82

#	Article	IF	CITATIONS
73	Leureptin: A soluble, extracellular leucine-rich repeat protein from Manduca sexta that binds lipopolysaccharide. Insect Biochemistry and Molecular Biology, 2010, 40, 713-722.	1.2	25
74	Molecular cloning of a multidomain cysteine protease and protease inhibitor precursor gene from the tobacco hornworm (Manduca sexta) and functional expression of the cathepsin F-like cysteine protease domain. Insect Biochemistry and Molecular Biology, 2010, 40, 835-846.	1.2	14
75	Functional analysis of four processing products from multiple precursors encoded by a lebocin-related gene from Manduca sexta. Developmental and Comparative Immunology, 2010, 34, 638-647.	1.0	29
76	Characterization of Multicopper Oxidase Related Protein (MCORP) in Two Insect Species. FASEB Journal, 2010, 24, 854.6.	0.2	0
77	Proteomic identification of hemolymph proteins involved in early stages of immune response in the insect Manduca sexta. FASEB Journal, 2010, 24, 518.4.	0.2	0
78	Possible immune functions of two mosquito multicopper oxidases. FASEB Journal, 2010, 24, 854.4.	0.2	0
79	Hemolymph. , 2009, , 446-449.		13
80	Functions of Manduca sexta Hemolymph Proteinases HP6 and HP8 in Two Innate Immune Pathways. Journal of Biological Chemistry, 2009, 284, 19716-19726.	1.6	149
81	Molecular and Functional Analyses of Amino Acid Decarboxylases Involved in Cuticle Tanning in Tribolium castaneum. Journal of Biological Chemistry, 2009, 284, 16584-16594.	1.6	181
82	The serpin gene family in Anopheles gambiae. Gene, 2009, 442, 47-54.	1.0	52
83	An insight into the transcriptome and proteome of the salivary gland of the stable fly, Stomoxys calcitrans. Insect Biochemistry and Molecular Biology, 2009, 39, 607-614.	1.2	31
84	Characterization of endogenous and recombinant forms of laccase-2, a multicopper oxidase from the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 2009, 39, 596-606.	1.2	53
85	Roles of haemolymph proteins in antimicrobial defences of <i>Manduca sexta</i> . , 2009, , 34-48.		19
86	Innate Immune Responses of Manduca Sexta. Contemporary Topics in Entomology Series, 2009, , .	0.3	2
87	PHENOLOXIDASES IN INSECT IMMUNITY. , 2008, , 69-96.		135
88	Characterization of the multicopper oxidase gene family in Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2008, 38, 817-824.	1.2	54
89	Multiple α subunits of integrin are involved in cell-mediated responses of the Manduca immune system. Developmental and Comparative Immunology, 2008, 32, 365-379.	1.0	73
90	Activation of Lepidopteran Insect Innate Immune Responses by C-Type Immulectins. , 2008, , .		0

6

#	Article	IF	CITATIONS
91	An Integrin-Tetraspanin Interaction Required for Cellular Innate Immune Responses of an Insect, Manduca sexta. Journal of Biological Chemistry, 2007, 282, 22563-22572.	1.6	57
92	The Lysozyme from Insect (Manduca sexta) Is a Cold-Adapted Enzyme. Protein and Peptide Letters, 2007, 14, 774-778.	0.4	20
93	Manduca sexta Hemolymph Proteinase 21 Activates Prophenoloxidase-activating Proteinase 3 in an Insect Innate Immune Response Proteinase Cascade. Journal of Biological Chemistry, 2007, 282, 11742-11749.	1.6	104
94	Neuroglian on hemocyte surfaces is involved in homophilic and heterophilic interactions of the innate immune system of Manduca sexta. Developmental and Comparative Immunology, 2007, 31, 1159-1167.	1.0	26
95	Purification of a cysteine protease inhibitor from larval hemolymph of the tobacco hornworm (Manduca sexta) and functional expression of the recombinant protein. Insect Biochemistry and Molecular Biology, 2007, 37, 960-968.	1.2	11
96	Characterization of tyrosine hydroxylase from Manduca sexta. Insect Biochemistry and Molecular Biology, 2007, 37, 1327-1337.	1.2	111
97	Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes. Science, 2007, 316, 1738-1743.	6.0	550
98	Serpins in a Lepidopteran Insect, Manduca sexta. , 2007, , 229-241.		4
99	Analyses of the Serpin Gene Family in the African Malaria Vector Mosquito, Anopheles gambiae. FASEB Journal, 2007, 21, A649.	0.2	Ο
100	Neuroglian-positive plasmatocytes of Manduca sexta and the initiation of hemocyte attachment to foreign surfaces. Developmental and Comparative Immunology, 2006, 30, 447-462.	1.0	49
101	Model reactions for insect cuticle sclerotization: Cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols. Insect Biochemistry and Molecular Biology, 2006, 36, 353-365.	1.2	108
102	Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity. Insect Molecular Biology, 2006, 15, 603-614.	1.0	170
103	Increased melanizing activity in Anopheles gambiae does not affect development of Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16858-16863.	3.3	93
104	Clustering of adhesion receptors following exposure of insect blood cells to foreign surfaces. Journal of Insect Physiology, 2005, 51, 555-564.	0.9	29
105	Peptidoglycan fragments elicit antibacterial protein synthesis in larvae of Manduca sexta. Archives of Insect Biochemistry and Physiology, 2005, 8, 147-164.	0.6	54
106	Identification of Plasma Proteases Inhibited by Manduca sexta Serpin-4 and Serpin-5 and Their Association with Components of the Prophenol Oxidase Activation Pathway. Journal of Biological Chemistry, 2005, 280, 14932-14942.	1.6	115
107	Manduca sexta Serpin-4 and Serpin-5 Inhibit the Prophenol Oxidase Activation Pathway. Journal of Biological Chemistry, 2005, 280, 14923-14931.	1.6	106
108	Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11337-11342.	3.3	342

#	Article	IF	CITATIONS
109	A hemocyte-specific integrin required for hemocytic encapsulation in the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 2005, 35, 369-380.	1.2	103
110	Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development. Insect Biochemistry and Molecular Biology, 2005, 35, 529-540.	1.2	110
111	Molecular identification of a bevy of serine proteinases in Manduca sexta hemolymph. Insect Biochemistry and Molecular Biology, 2005, 35, 931-943.	1.2	72
112	RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella. Journal of Insect Science, 2004, 4, 15.	0.6	28
113	RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella. Journal of Insect Science, 2004, 4, 1-9.	0.9	13
114	Bacterial challenge stimulates innate immune responses in extra-embryonic tissues of tobacco hornworm eggs. Insect Molecular Biology, 2004, 13, 19-24.	1.0	71
115	Innate immune responses of a lepidopteran insect, Manduca sexta. Immunological Reviews, 2004, 198, 97-105.	2.8	599
116	Innate Immunity in a Pyralid Moth. Journal of Biological Chemistry, 2004, 279, 26605-26611.	1.6	48
117	Immulectin-2, a pattern recognition receptor that stimulates hemocyte encapsulation and melanization in the tobacco hornworm, Manduca sexta. Developmental and Comparative Immunology, 2004, 28, 891-900.	1.0	156
118	Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2004, 34, 29-41.	1.2	162
119	β-1,3-Glucan recognition protein-2 (βGRP-2) from Manduca sexta: an acute-phase protein that binds β-1,3-glucan and lipoteichoic acid to aggregate fungi and bacteria and stimulate prophenoloxidase activation. Insect Biochemistry and Molecular Biology, 2004, 34, 89-100.	1.2	120
120	Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochemistry and Molecular Biology, 2004, 34, 291-304.	1.2	167
121	Hematopoietic organs of Manduca sexta and hemocyte lineages. Development Genes and Evolution, 2003, 213, 477-491.	0.4	70
122	Manduca sexta lipopolysaccharide-specific immulectin-2 protects larvae from bacterial infection. Developmental and Comparative Immunology, 2003, 27, 189-196.	1.0	106
123	Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene, 2003, 304, 117-131.	1.0	297
124	Nonproteolytic serine proteinase homologs are involved in prophenoloxidase activation in the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 2003, 33, 197-208.	1.2	220
125	Prophenoloxidase-activating proteinase-3 (PAP-3) from Manduca sexta hemolymph: a clip-domain serine proteinase regulated by serpin-1J and serine proteinase homologs. Insect Biochemistry and Molecular Biology, 2003, 33, 1049-1060.	1.2	201
126	Prophenoloxidase-activating Proteinase-2 from Hemolymph ofManduca sexta. Journal of Biological Chemistry, 2003, 278, 3552-3561.	1.6	194

#	Article	IF	CITATIONS
127	Manduca sexta Serpin-3 Regulates Prophenoloxidase Activation in Response to Infection by Inhibiting Prophenoloxidase-activating Proteinases. Journal of Biological Chemistry, 2003, 278, 46556-46564.	1.6	161
128	Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta. Insect Biochemistry and Molecular Biology, 2002, 32, 1497-1506.	1.2	76
129	Binding of hemolin to bacterial lipopolysaccharide and lipoteichoic acid. FEBS Journal, 2002, 269, 1827-1834.	0.2	105
130	Expression and Purification of Manduca sexta Prophenoloxidase-Activating Proteinase Precursor (proPAP) from Baculovirus-Infected Insect Cells. Protein Expression and Purification, 2001, 23, 328-337.	0.6	28
131	A bacteria-induced, intracellular serpin in granular hemocytes of Manduca sexta. Insect Biochemistry and Molecular Biology, 2001, 31, 887-898.	1.2	49
132	Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron, 2001, 57, 385-392.	1.0	193
133	The structure of a Michaelis serpin-protease complex. Nature Structural Biology, 2001, 8, 979-983.	9.7	141
134	The extracellular matrix protein lacunin is expressed by a subset of hemocytes involved in basal lamina morphogenesis. Journal of Insect Physiology, 2001, 47, 997-1006.	0.9	50
135	Proteolytic Activation of Prophenoloxidase in an Insect Manduca Sexta. Advances in Experimental Medicine and Biology, 2001, 484, 313-317.	0.8	11
136	A Family of C-Type Lectins in Manduca sexta. Advances in Experimental Medicine and Biology, 2001, 484, 191-194.	0.8	28
137	Hemolymph Proteinases in Immune Responses of Manduca sexta. Advances in Experimental Medicine and Biology, 2001, 484, 319-328.	0.8	50
138	Monoclonal antibody MS13 identifies a plasmatocyte membrane protein and inhibits encapsulation and spreading reactions ofManduca sexta hemocytes. Archives of Insect Biochemistry and Physiology, 2000, 45, 95-108.	0.6	34
139	Isolation and characterization of novel inducible serine protease inhibitors from larval hemolymph of the greater wax moth Galleria mellonella. FEBS Journal, 2000, 267, 2046-2053.	0.2	72
140	Immulectin-2, a Lipopolysaccharide-specific Lectin from an Insect, Manduca sexta, Is Induced in Response to Gram-negative Bacteria. Journal of Biological Chemistry, 2000, 275, 37373-37381.	1.6	259
141	A β1,3-Glucan Recognition Protein from an Insect, Manduca sexta, Agglutinates Microorganisms and Activates the Phenoloxidase Cascade. Journal of Biological Chemistry, 2000, 275, 7505-7514.	1.6	206
142	The clip-domain family of serine proteinases in arthropods. Insect Biochemistry and Molecular Biology, 2000, 30, 95-105.	1.2	358
143	A Novel Serpin Expressed by Blood-Borne Microfilariae of the Parasitic Nematode Brugia malayi Inhibits Human Neutrophil Serine Proteinases. Blood, 1999, 94, 1418-1428.	0.6	114
144	Four serine proteinases expressed in Manduca sexta haemocytes. Insect Molecular Biology, 1999, 8, 39-53.	1.0	49

#	Article	IF	CITATIONS
145	The structure of active serpin 1K from Manduca sexta. Structure, 1999, 7, 103-109.	1.6	71
146	Developmental expression ofManduca sexta hemolin. Archives of Insect Biochemistry and Physiology, 1999, 42, 198-212.	0.6	46
147	Immulectin, an inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase. Insect Biochemistry and Molecular Biology, 1999, 29, 585-597.	1.2	215
148	Biological activity of Manduca sexta paralytic and plasmatocyte spreading peptide and primary structure of its hemolymph precursor. Insect Biochemistry and Molecular Biology, 1999, 29, 1075-1086.	1.2	77
149	Serine proteinase inhibitors in arthropod immunity. Developmental and Comparative Immunology, 1999, 23, 291-301.	1.0	377
150	Developmental expression of Manduca sexta hemolin. , 1999, 42, 198.		1
151	Insect proteinases. , 1999, , 125-148.		23
152	A Novel Serpin Expressed by Blood-Borne Microfilariae of the Parasitic Nematode Brugia malayi Inhibits Human Neutrophil Serine Proteinases. Blood, 1999, 94, 1418-1428.	0.6	2
153	Characterization and Functional Analysis of 12 Naturally Occurring Reactive Site Variants of Serpin-1 from Manduca sexta. Journal of Biological Chemistry, 1997, 272, 1082-1087.	1.6	132
154	Molecular cloning of cDNAs for two pro-phenol oxidase subunits from the malaria vector, Anopheles gambiae1The sequences have been deposited in GenBank under accession numbers AF004915 and AF004916.1. Insect Biochemistry and Molecular Biology, 1997, 27, 693-699.	1.2	50
155	Subunit Composition of Pro-phenol Oxidase from Manduca sexta: Molecular Cloning of Subunit ProPO-p1. Insect Biochemistry and Molecular Biology, 1997, 27, 835-850.	1.2	156
156	BIOLOGICAL MEDIATORS OF INSECT IMMUNITY. Annual Review of Entomology, 1997, 42, 611-643.	5.7	1,141
157	Serpins from an Insect, Manduca sexta. Advances in Experimental Medicine and Biology, 1997, 425, 155-161.	0.8	17
158	In search of a function for hemolin, a hemolymph protein from the immunoglobulin superfamily. Journal of Insect Physiology, 1996, 42, 73-79.	0.9	45
159	Primary structure of ribosomal proteins S3 and S7 from <i>Manduca sexta</i> . Insect Molecular Biology, 1996, 5, 31-38.	1.0	56
160	Organization of Serpin Gene-1 from Manduca sexta. Journal of Biological Chemistry, 1996, 271, 28017-28023.	1.6	82
161	Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Reports, 1995, 14, 758-62.	2.8	91
162	Isolation and characterization of apolipophorin-III from the giant water bug (Lethocerus medius). Insect Biochemistry and Molecular Biology, 1995, 25, 759-764.	1.2	9

#	Article	IF	CITATIONS
163	Regulation of serpin gene-1 in Manduca sexta. Insect Biochemistry and Molecular Biology, 1995, 25, 285-291.	1.2	30
164	Monoclonal antibodies against Manduca sexta heemocytes bind Aedes aegypti hemocytes: Characterization of six monoclonal antibodies that bind hemocytes from both species. Developmental and Comparative Immunology, 1995, 19, 451-461.	1.0	17
165	Isolation and characterization of a hemocyte aggregation inhibitor from hemolymph ofManduca sexta larvae. Archives of Insect Biochemistry and Physiology, 1994, 27, 123-136.	0.6	54
166	Structure, Expression, and Hormonal Control of Genes from the Mosquito, Aedes aegypti, Which Encode Proteins Similar to the Vitelline Membrane Proteins of Drosophila melanogaster. Developmental Biology, 1993, 155, 558-568.	0.9	47
167	Effects of parasitism by the braconid wasp Cotesia congregata on host hemolymph proteins of the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 1993, 23, 643-653.	1.2	72
168	Regulation of Insect Hemolymph Phenoloxidases. , 1993, , 317-342.		53
169	Differential alaserpin expression during development of the antennae in the tobacco hawkmoth,Manduca sexta. Archives of Insect Biochemistry and Physiology, 1992, 19, 39-52.	0.6	6
170	Juvenile hormone analog and injection effects on locust hemolymph protein synthesis. Archives of Insect Biochemistry and Physiology, 1992, 20, 167-180.	0.6	28
171	Molecular structure of an apolipoprotein determined at 2.5ANG. resolution. Biochemistry, 1991, 30, 603-608.	1.2	266
172	Different isoforms of an apoprotein (apolipophorin III) associate with lipoproteins in Locusta migratoria. FEBS Journal, 1991, 196, 509-517.	0.2	37
173	Bacteria-induced protein P4 (hemolin) fromManduca sexta: A member of the immunoglobulin superfamily which can inhibit hemocyte aggregation. Archives of Insect Biochemistry and Physiology, 1991, 18, 285-300.	0.6	106
174	Isolation and characterization of four serine proteinase inhibitors (serpins) from hemolymph of Manduca sexta. Insect Biochemistry, 1990, 20, 141-147.	1.8	36
175	Adipokinetic hormone causes formation of a low density lipophorin in the house cricket, Acheta domesticus. Insect Biochemistry, 1990, 20, 859-863.	1.8	14
176	Isolation and characterization of bacteria-induced protein P4 from hemolymph ofManduca sexta. Archives of Insect Biochemistry and Physiology, 1990, 15, 33-41.	0.6	52
177	Insect Haemolymph Proteins. Advances in Insect Physiology, 1990, 22, 299-396.	1.1	294
178	Serine Protease Inhibitors from the Serpin Gene Family in Manduca sexta and Drosophila melanogaster. , 1990, , 139-146.		5
179	Soluble peptidoglycan fragments stimulate antibacterial protein synthesis by fat body from larvae of Manduca sexta. Developmental and Comparative Immunology, 1985, 9, 559-568.	1.0	89
180	Susceptibility of the Zebra Caterpillar to Autographa californica Nuclear Polyhedrosis Virus1. Journal of Economic Entomology, 1979, 72, 570-572.	0.8	16