Caroline E R Lehmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5662180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6442-6447.	7.1	519
2	Savanna Vegetation-Fire-Climate Relationships Differ Among Continents. Science, 2014, 343, 548-552.	12.6	500
3	Savanna woody encroachment is widespread across three continents. Global Change Biology, 2017, 23, 235-244.	9.5	442
4	Tropical grassy biomes: misunderstood, neglected, and under threat. Trends in Ecology and Evolution, 2014, 29, 205-213.	8.7	423
5	Deciphering the distribution of the savanna biome. New Phytologist, 2011, 191, 197-209.	7.3	410
6	When is a †forest' a savanna, and why does it matter?. Global Ecology and Biogeography, 2011, 20, 653-660.	5.8	348
7	Comment on "The global tree restoration potential― Science, 2019, 366, .	12.6	185
8	Invasions: the trail behind, the path ahead, and a test of a disturbing idea. Journal of Ecology, 2012, 100, 116-127.	4.0	180
9	Global grass (<scp>P</scp> oaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biological Reviews, 2018, 93, 1125-1144.	10.4	178
10	The Trouble with Trees: Afforestation Plans for Africa. Trends in Ecology and Evolution, 2019, 34, 963-965.	8.7	164
11	Tropical savannas and dry forests. Current Biology, 2018, 28, R541-R545.	3.9	138
12	Determinants of flammability in savanna grass species. Journal of Ecology, 2016, 104, 138-148.	4.0	123
13	Ecosystem services from southern African woodlands and their future under global change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150312.	4.0	119
14	Human impacts in African savannas are mediated by plant functional traits. New Phytologist, 2018, 220, 10-24.	7.3	114
15	Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Global Ecology and Biogeography, 2020, 29, 925-943.	5.8	105
16	Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environmental Research Letters, 2020, 15, 030201.	5.2	105
17	SAVANNA RESPONSES TO FERAL BUFFALO IN KAKADU NATIONAL PARK, AUSTRALIA. Ecological Monographs, 2007, 77, 441-463.	5.4	75
18	Photosynthetic innovation broadens the niche within a single species. Ecology Letters, 2015, 18, 1021-1029.	6.4	75

CAROLINE E R LEHMANN

#	Article	IF	CITATIONS
19	Tropical grassy biomes: linking ecology, human use and conservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160329.	4.0	73
20	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5.3	73
21	A unified framework for plant lifeâ€history strategies shaped by fire and herbivory. New Phytologist, 2019, 224, 1490-1503.	7.3	70
22	Spatioâ€ŧemporal trends in tree cover of a tropical mesic savanna are driven by landscape disturbance. Journal of Applied Ecology, 2008, 45, 1304-1311.	4.0	63
23	Fire regimes and woody biomass dynamics in Australian savannas. Journal of Biogeography, 2014, 41, 133-144.	3.0	60
24	Preâ€rain greenâ€up is ubiquitous across southern tropical Africa: implications for temporal niche separation and model representation. New Phytologist, 2017, 213, 625-633.	7.3	60
25	Comment on $\hat{a} \in \hat{\infty}$ The extent of forest in dryland biomes $\hat{a} \in \hat{S}$ Science, 2017, 358, .	12.6	57
26	Fire controls population structure in four dominant tree species in a tropical savanna. Oecologia, 2009, 161, 505-515.	2.0	52
27	Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists. Trends in Ecology and Evolution, 2017, 32, 258-267.	8.7	52
28	Fire and grazing determined grasslands of central Madagascar represent ancient assemblages. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200598.	2.6	48
29	Grass Functional Traits Differentiate Forest and Savanna in the Madagascar Central Highlands. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	45
30	Alternate Grassy Ecosystem States Are Determined by Palatability–Flammability Trade-Offs. Trends in Ecology and Evolution, 2019, 34, 286-290.	8.7	43
31	Decadal dynamics of tree cover in an Australian tropical savanna. Austral Ecology, 2009, 34, 601-612.	1.5	42
32	Contrasting architecture of key <scp>A</scp> frican and <scp>A</scp> ustralian savanna tree taxa drives intercontinental structural divergence. Global Ecology and Biogeography, 2014, 23, 1235-1244.	5.8	39
33	Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences, 2016, 13, 3717-3734.	3.3	36
34	The global distribution of grass functional traits within grassy biomes. Journal of Biogeography, 2020, 47, 553-565.	3.0	24
35	Resprouting grasses are associated with less frequent fire than seeders. New Phytologist, 2021, 230, 832-844.	7.3	24
36	The recent and rapid spread of <i>Themeda triandra</i> . Botany Letters, 2017, 164, 327-337.	1.4	22

#	Article	IF	CITATIONS
37	Shade alters savanna grass layer structure and function along a gradient of canopy cover. Journal of Vegetation Science, 2021, 32, .	2.2	22
38	Lineageâ€based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models. New Phytologist, 2020, 228, 15-23.	7.3	20
39	Stem diameter growth rates in a fireâ€prone savanna correlate with photosynthetic rate and branchâ€scale biomass allocation, but not specific leaf area. Austral Ecology, 2019, 44, 339-350.	1.5	17
40	Geographical structure of genetic diversity in <i>Loudetia simplex</i> (Poaceae) in Madagascar and South Africa. Botanical Journal of the Linnean Society, 2021, 196, 81-99.	1.6	16
41	Madagascar's fire regimes challenge global assumptions about landscape degradation. Global Change Biology, 2022, 28, 6944-6960.	9.5	16
42	Encroachment diminishes herbaceous plant diversity in grassy ecosystems worldwide. Global Change Biology, 2022, 28, 5532-5546.	9.5	16
43	Savannas Need Protection. Science, 2010, 327, 642-643.	12.6	13
44	Savannas are vital but overlooked carbon sinks. Science, 2022, 375, 392-392.	12.6	11
45	Complex evolutionary history of two ecologically significant grass genera, <i>Themeda</i> and <i>Heteropogon</i> (Poaceae: Panicoideae: Andropogoneae). Botanical Journal of the Linnean Society, 2021, 196, 437-455.	1.6	10
46	Plant height and lifespan predict range size in southern African grasses. Journal of Biogeography, 2021, 48, 3047-3059.	3.0	10
47	Beyond ancient versus anthropogenic for Madagascar's grassy ecosystems. A Reply to: Crowley <i>et al</i> . (2021). Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210388.	2.6	7
48	Drought and fire determine juvenile and adult woody diversity and dominance in a semiâ€arid African savanna. Biotropica, 2022, 54, 1015-1029.	1.6	7
49	Shade alters the growth and architecture of tropical grasses by reducing root biomass. Biotropica, 2021, 53, 1052-1062.	1.6	6
50	Tree–Grass Interactions in Savannas. , 2010, , 39-53.		4
51	Nitrogen concentration and physical properties are key drivers of woody tissue respiration. Annals of Botany, 2022, 129, 633-646.	2.9	4
52	<i>Heteropogon</i> â€ <i>Themeda</i> grasses evolve to occupy either tropical grassland or wetland biomes. Journal of Systematics and Evolution, 2022, 60, 653-674.	3.1	1
53	953. UAPACA BOJERI. Curtis's Botanical Magazine, 2020, 37, 313-323.	0.3	0