Julio M D'arcy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661318/publications.pdf

Version: 2024-02-01

26 1,568 papers citations

16 h-index 25 g-index

26 all docs 26 docs citations 26 times ranked 2451 citing authors

#	Article	IF	CITATIONS
1	Kirigami electrodes of conducting polymer nanofibers for wearable humidity dosimeters and stretchable supercapacitors. Journal of Materials Chemistry A, 2021, 9, 9849-9857.	10.3	15
2	Solid-State Precursor Impregnation for Enhanced Capacitance in Hierarchical Flexible Poly(3,4-Ethylenedioxythiophene) Supercapacitors. ACS Nano, 2021, 15, 7799-7810.	14.6	27
3	Microtubular PEDOT-Coated Bricks for Atmospheric Water Harvesting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34671-34678.	8.0	12
4	Single PEDOT Catalyst Boosts CO ₂ Photoreduction Efficiency. ACS Central Science, 2021, 7, 1668-1675.	11.3	12
5	Spectroscopic investigations of electron and hole dynamics in MAPbBr ₃ perovskite film and carrier extraction to PEDOT hole transport layer. Physical Chemistry Chemical Physics, 2021, 23, 13011-13022.	2.8	6
6	Microsupercapacitors: Direct Conversion of Fe ₂ O ₃ to 3D Nanofibrillar PEDOT Microsupercapacitors (Adv. Funct. Mater. 32/2020). Advanced Functional Materials, 2020, 30, 2070217.	14.9	0
7	Energy storing bricks for stationary PEDOT supercapacitors. Nature Communications, 2020, 11, 3882.	12.8	67
8	Direct Conversion of Fe ₂ O ₃ to 3D Nanofibrillar PEDOT Microsupercapacitors. Advanced Functional Materials, 2020, 30, 2003394.	14.9	30
9	Self-woven nanofibrillar PEDOT mats for impact-resistant supercapacitors. Sustainable Energy and Fuels, 2019, 3, 1154-1162.	4.9	9
10	Vapor/liquid polymerization of ultraporous transparent and capacitive polypyrrole nanonets. Nanoscale, 2019, 11, 12358-12369.	5 . 6	14
11	Converting Rust to PEDOT Nanofibers for Supercapacitors. ACS Applied Energy Materials, 2019, 2, 3435-3444.	5.1	33
12	Synthesis of Submicron PEDOT Particles of High Electrical Conductivity via Continuous Aerosol Vapor Polymerization. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47320-47329.	8.0	13
13	Metal Oxide-Assisted PEDOT Nanostructures via Hydrolysis-Assisted Vapor-Phase Polymerization for Energy Storage. ACS Applied Nano Materials, 2018, 1, 1219-1227.	5.0	22
14	Studying Electrical Conductivity Using a 3D Printed Four-Point Probe Station. Journal of Chemical Education, 2017, 94, 950-955.	2.3	34
15	Ultrahigh stability of high-power nanofibrillar PEDOT supercapacitors. Sustainable Energy and Fuels, 2017, 1, 482-491.	4.9	17
16	Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. Journal of Materials Chemistry A, 2017, 5, 11772-11780.	10.3	51
17	Condensing Vapor Phase Polymerization (CVPP) of Electrochemically Capacitive and Stable Polypyrrole Microtubes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41496-41504.	8.0	19
18	Evaluation and Stability of PEDOT Polymer Electrodes for Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2016, 7, 3770-3775.	4.6	49

#	Article	IF	CITATION
19	Conducting Polymers for Pseudocapacitive Energy Storage. Chemistry of Materials, 2016, 28, 5989-5998.	6.7	389
20	Enhancing Cycling Stability of Aqueous Polyaniline Electrochemical Capacitors. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 29452-29460.	8.0	29
21	Vapor-Phase Polymerization of Nanofibrillar Poly(3,4-ethylenedioxythiophene) for Supercapacitors. ACS Nano, 2014, 8, 1500-1510.	14.6	217
22	Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition. Nanoscale, 2012, 4, 3075.	5.6	13
23	The oxidation of aniline to produce "polyaniline†a process yielding many different nanoscale structures. Journal of Materials Chemistry, 2011, 21, 3534-3550.	6.7	269
24	Versatile solution for growing thin films of conducting polymers. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19673-19678.	7.1	52
25	Substituted Polyaniline Nanofibers Produced via Rapid Initiated Polymerization. Macromolecules, 2008, 41, 7405-7410.	4.8	80
26	A Templateâ€Free Route to Polypyrrole Nanofibers. Macromolecular Rapid Communications, 2007, 28, 2289-2293.	3.9	89