Javier Peralta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661228/publications.pdf Version: 2024-02-01

INVIED DEDALTA

#	Article	IF	CITATIONS
1	Variable winds on Venus mapped in three dimensions. Geophysical Research Letters, 2008, 35, .	4.0	119
2	AKATSUKI returns to Venus. Earth, Planets and Space, 2016, 68, .	2.5	89
3	Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus Express. Planetary and Space Science, 2015, 113-114, 78-99.	1.7	69
4	Assessing the long-term variability of Venus winds at cloud level from VIRTIS–Venus Express. Icarus, 2012, 217, 585-598.	2.5	67
5	A reanalysis of Venus winds at two cloud levels from Galileo SSI images. Icarus, 2007, 190, 469-477.	2.5	60
6	Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEXâ€VIRTIS images. Journal of Geophysical Research, 2008, 113, .	3.3	60
7	Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki. Earth, Planets and Space, 2018, 70, .	2.5	52
8	A clear view of the multifaceted dayside ionosphere of Mars. Geophysical Research Letters, 2012, 39, .	4.0	42
9	High latitude gravity waves at the Venus cloud tops as observed by the Venus Monitoring Camera on board Venus Express. Icarus, 2014, 227, 94-111.	2.5	41
10	Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements. Icarus, 2015, 248, 478-498.	2.5	41
11	Venus Upper Clouds and the UV Absorber From MESSENGER/MASCS Observations. Journal of Geophysical Research E: Planets, 2018, 123, 145-162.	3.6	41
12	How waves and turbulence maintain the super-rotation of Venus' atmosphere. Science, 2020, 368, 405-409.	12.6	41
13	The Planetary Laboratory for Image Analysis (PLIA). Advances in Space Research, 2010, 46, 1120-1138.	2.6	37
14	Venus's major cloud feature as an equatorially trapped wave distorted by the wind. Geophysical Research Letters, 2015, 42, 705-711.	4.0	36
15	Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki. Nature Geoscience, 2017, 10, 646-651.	12.9	35
16	Stationary waves and slowly moving features in the night upper clouds of Venus. Nature Astronomy, 2017, 1, .	10.1	35
17	ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES. Astrophysical Journal, Supplement Series, 2014, 213, 18.	7.7	34
18	A chaotic long-lived vortex at the southern pole of Venus. Nature Geoscience, 2013, 6, 254-257.	12.9	32

JAVIER PERALTA

#	Article	IF	CITATIONS
19	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
20	Venus looks different from day to night across wavelengths: morphology from Akatsuki multispectral images. Earth, Planets and Space, 2018, 70, 24.	2.5	31
21	ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES. Astrophysical Journal, Supplement Series, 2014, 213, 17.	7.7	30
22	Venus cloud-tracked and doppler velocimetry winds from CFHT/ESPaDOnS and Venus Express/VIRTIS in April 2014. Icarus, 2017, 285, 8-26.	2.5	30
23	Long-term Variations of Venus's 365 nm Albedo Observed by Venus Express, Akatsuki, MESSENGER, and the Hubble Space Telescope. Astronomical Journal, 2019, 158, 126.	4.7	30
24	Solar migrating atmospheric tides in the winds of the polar region of Venus. Icarus, 2012, 220, 958-970.	2.5	28
25	Cloud brightness distribution and turbulence in Venus using Galileo violet images. Icarus, 2007, 188, 305-314.	2.5	22
26	Wind circulation regimes at Venus' cloud tops: Ground-based Doppler velocimetry using CFHT/ESPaDOnS and comparison with simultaneous cloud tracking measurements using VEx/VIRTIS in February 2011. Icarus, 2014, 243, 249-263.	2.5	21
27	Overview of useful spectral regions for Venus: An update to encourage observations complementary to the Akatsuki mission. Icarus, 2017, 288, 235-239.	2.5	21
28	Nightside Winds at the Lower Clouds of Venus with Akatsuki/IR2: Longitudinal, Local Time, and Decadal Variations from Comparison with Previous Measurements. Astrophysical Journal, Supplement Series, 2018, 239, 29.	7.7	21
29	New cloud morphologies discovered on the Venus's night during Akatsuki. Icarus, 2019, 333, 177-182.	2.5	20
30	Venus's winds and temperatures during the MESSENGER's flyby: An approximation to a threeâ€dimensional instantaneous state of the atmosphere. Geophysical Research Letters, 2017, 44, 3907-3915.	4.0	18
31	A Longâ€Lived Sharp Disruption on the Lower Clouds of Venus. Geophysical Research Letters, 2020, 47, e2020GL087221.	4.0	17
32	VENUS CLOUD MORPHOLOGY AND MOTIONS FROM GROUND-BASED IMAGES AT THE TIME OF THE AKATSUKI ORBIT INSERTION ^{â^—} . Astrophysical Journal Letters, 2016, 833, L7.	8.3	16
33	Venus' cloud top wind study: Coordinated Akatsuki/UVI with cloud tracking and TNG/HARPS-N with Doppler velocimetry observations. Icarus, 2020, 335, 113418.	2.5	16
34	The nightside cloud-top circulation of the atmosphere of Venus. Nature, 2021, 595, 511-515.	27.8	14
35	Dayside temperatures in the Venus upper atmosphere from Venus Express/VIRTIS nadir measurements at 4.3 <i>μ</i> m. Astronomy and Astrophysics, 2016, 585, A53.	5.1	12
36	Parker Solar Probe Imaging of the Night Side of Venus. Geophysical Research Letters, 2022, 49, .	4.0	12

JAVIER PERALTA

#	Article	IF	CITATIONS
37	Venus Atmospheric Dynamics at Two Altitudes: Akatsuki and Venus Express Cloud Tracking, Ground-Based Doppler Observations and Comparison with Modelling. Atmosphere, 2021, 12, 506.	2.3	11
38	Morphology and Dynamics of Venus's Middle Clouds With Akatsuki/IR1. Geophysical Research Letters, 2019, 46, 2399-2407.	4.0	10
39	NO+ fundamental and first hot ro-vibrational line frequencies from MIPAS/Envisat atmospheric spectra. Journal of Molecular Spectroscopy, 2006, 237, 218-224.	1.2	7
40	Multilayer hazes over Saturn's hexagon from Cassini ISS limb images. Nature Communications, 2020, 11, 2281.	12.8	6
41	Using VIRTIS on Venus Express to Constrain the Properties of the Giant Dark Cloud Observed in Images of Venus by IR2 on Akatsuki. Planetary Science Journal, 2021, 2, 153.	3.6	6
42	Spatial and Temporal Variability of the 365â€nm Albedo of Venus Observed by the Camera on Board Venus Express. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006271.	3.6	4
43	Characterising atmospheric gravity waves on the nightside lower clouds of Venus: a systematic analysis. Astronomy and Astrophysics, 2021, 649, A34.	5.1	2
44	Winds, turbulence and waves in the clouds of Venus. Planetary and Space Science, 2010, 58, 882-883.	1.7	1
45	Amateur Observers Witness the Return of Venus' Cloud Discontinuity. Atmosphere, 2022, 13, 348.	2.3	1
46	Venus' Cloud-Tracked Winds Using Ground- and Space-Based Observations with TNG/NICS and VEx/VIRTIS. Atmosphere, 2022, 13, 337.	2.3	1
47	Venus Spectrophotometry During the MESSENGER Mission Fly-By. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 455-455.	0.3	0