
Thomas S Kilduff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661144/publications.pdf Version: 2024-02-01

THOMAS S KILDLIFE

#	Article	IF	CITATIONS
1	The development of sleep/wake disruption and cataplexy as hypocretin/orexin neurons degenerate in male vs. female <i>Orexin/tTA; TetO-DTA</i> Mice. Sleep, 2022, 45, .	0.6	6
2	Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep, 2021, 44, .	0.6	14
3	Cerebrospinal fluid monoamine levels in central disorders of hypersomnolence. Sleep, 2021, 44, .	0.6	15
4	Orexin receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	4
5	Hypocretin/Orexin Receptor Pharmacology and Sleep Phases. Frontiers of Neurology and Neuroscience, 2021, 45, 22-37.	3.0	28
6	Shallow metabolic depression and human spaceflight: a feasible first step. Journal of Applied Physiology, 2020, 128, 637-647.	1.2	12
7	Acute cognitive effects of the hypocretin receptor antagonist almorexant relative to zolpidem and placebo: a randomized clinical trial. Sleep, 2020, 43, .	0.6	18
8	Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. ELife, 2020, 9, .	2.8	20
9	Automated Sleep Stage Scoring Using k-Nearest Neighbors Classifier. Journal of Open Source Software, 2020, 5, 2377.	2.0	3
10	REM sleep–active MCH neurons are involved in forgetting hippocampus-dependent memories. Science, 2019, 365, 1308-1313.	6.0	138
11	Trace amine-associated receptor 1 agonism promotes wakefulness without impairment of cognition in Cynomolgus macaques. Neuropsychopharmacology, 2019, 44, 1485-1493.	2.8	14
12	Excitation of Cortical nNOS/NK1R Neurons by Hypocretin 1 is Independent of Sleep Homeostasis. Cerebral Cortex, 2019, 29, 1090-1108.	1.6	8
13	Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. Journal of Neuroscience, 2019, 39, 9435-9452.	1.7	12
14	Electrophysiological characterization of sleep/wake, activity and the response to caffeine in adult cynomolgus macaques. Neurobiology of Sleep and Circadian Rhythms, 2019, 6, 9-23.	1.4	8
15	Neurobiological and immunogenetic aspects of narcolepsy: Implications for pharmacotherapy. Sleep Medicine Reviews, 2019, 43, 23-36.	3.8	57
16	Cortical nNOS/NK1 Receptor Neurons are Regulated by Cholinergic Projections From the Basal Forebrain. Cerebral Cortex, 2018, 28, 1959-1979.	1.6	12
17	Deletion of Trace Amine-Associated Receptor 1 Attenuates Behavioral Responses to Caffeine. Frontiers in Pharmacology, 2018, 9, 35.	1.6	7
18	Parallel Arousal Pathways in the Lateral Hypothalamus. ENeuro, 2018, 5, ENEURO.0228-18.2018.	0.9	13

#	Article	IF	CITATIONS
19	Challenges in the development of therapeutics for narcolepsy. Progress in Neurobiology, 2017, 152, 89-113.	2.8	45
20	Mapping the Hypocretin/Orexin Neuronal System: An Unexpectedly Productive Journey. Journal of Neuroscience, 2017, 37, 2268-2272.	1.7	27
21	Editorial overview: Neurobiology of sleep 2017. Current Opinion in Neurobiology, 2017, 44, A1-A3.	2.0	1
22	Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep. Sleep, 2017, 40, .	0.6	8
23	Trace Amine-Associated Receptor 1 Agonists as Narcolepsy Therapeutics. Biological Psychiatry, 2017, 82, 623-633.	0.7	47
24	Trace Amine-Associated Receptor 1 Regulates Wakefulness and EEG Spectral Composition. Neuropsychopharmacology, 2017, 42, 1305-1314.	2.8	27
25	Sleep/Wake Physiology and Quantitative Electroencephalogram Analysis of the Neuroligin-3 Knockout Rat Model of Autism Spectrum Disorder. Sleep, 2017, 40, .	0.6	24
26	Hypnotic Medications. , 2017, , 424-431.e5.		2
27	0014 TRACE AMINE-ASSOCIATED RECEPTOR 1 REGULATES WAKEFULNESS, BEHAVIORAL ACTIVATION AND EEG SPECTRAL COMPOSITION. Sleep, 2017, 40, A5-A5.	0.6	0
28	Cntnap2 Knockout Rats and Mice Exhibit Epileptiform Activity and Abnormal Sleep–Wake Physiology. Sleep, 2017, 40, .	0.6	41
29	Quantitative Electroencephalographic Analysis Provides an Early-Stage Indicator of Disease Onset and Progression in the zQ175 Knock-In Mouse Model of Huntington's Disease. Sleep, 2016, 39, 379-391.	0.6	36
30	Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep. ENeuro, 2016, 3, ENEURO.0018-16.2016.	0.9	15
31	Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain. Brain Structure and Function, 2016, 221, 923-940.	1.2	22
32	H1N1 infection of sleep/wake regions results in narcolepsy-like symptoms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 476-477.	3.3	5
33	The Dual Hypocretin Receptor Antagonist Almorexant is Permissive for Activation of Wake-Promoting Systems. Neuropsychopharmacology, 2016, 41, 1144-1155.	2.8	16
34	Pharmacology of Basimglurant (RO4917523, RG7090), a Unique Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator in Clinical Development for Depression. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 213-233.	1.3	90
35	Homeostatic Sleep Pressure is the Primary Factor for Activation of Cortical nNOS/NK1 Neurons. Neuropsychopharmacology, 2015, 40, 632-639.	2.8	25
36	The Neurobiology of Sleep and Wakefulness. Psychiatric Clinics of North America, 2015, 38, 615-644.	0.7	138

#	Article	IF	CITATIONS
37	The hypocretin/orexin antagonist almorexant promotes sleep without impairment of performance in rats. Frontiers in Neuroscience, 2014, 8, 3.	1.4	37
38	Conditional Ablation of Orexin/Hypocretin Neurons: A New Mouse Model for the Study of Narcolepsy and Orexin System Function. Journal of Neuroscience, 2014, 34, 6495-6509.	1.7	181
39	Optogenetic Manipulation of Activity and Temporally Controlled Cell-Specific Ablation Reveal a Role for MCH Neurons in Sleep/Wake Regulation. Journal of Neuroscience, 2014, 34, 6896-6909.	1.7	187
40	GABA _B Agonism Promotes Sleep and Reduces Cataplexy in Murine Narcolepsy. Journal of Neuroscience, 2014, 34, 6485-6494.	1.7	56
41	A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20272-20277.	3.3	112
42	A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Molecular Psychiatry, 2013, 18, 543-556.	4.1	226
43	Longitudinal analysis of the electroencephalogram and sleep phenotype in the R6/2 mouse model of Huntington's disease. Brain, 2013, 136, 2159-2172.	3.7	77
44	Almorexant Promotes Sleep and Exacerbates Cataplexy in a Murine Model of Narcolepsy. Sleep, 2013, 36, 325-336.	0.6	58
45	Influence of Inhibitory Serotonergic Inputs to Orexin/Hypocretin Neurons on the Diurnal Rhythm of Sleep and Wakefulness. Sleep, 2013, 36, 1391-1404.	0.6	42
46	Understanding the Sleep-Wake Cycle: Sleep, Insomnia, and the Orexin System. Journal of Clinical Psychiatry, 2013, 74, 3-20.	1.1	50
47	Trace Amine-Associated Receptor 1 Partial Agonism Reveals Novel Paradigm for Neuropsychiatric Therapeutics. Biological Psychiatry, 2012, 72, 934-942.	0.7	155
48	Cortical nNOS neurons co-express the NK1 receptor and are depolarized by Substance P in multiple mammalian species. Frontiers in Neural Circuits, 2012, 6, 31.	1.4	27
49	Dual Hypocretin Receptor Antagonism Is More Effective for Sleep Promotion than Antagonism of Either Receptor Alone. PLoS ONE, 2012, 7, e39131.	1.1	107
50	Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation?. Trends in Neurosciences, 2011, 34, 10-19.	4.2	81
51	The wake-promoting effects of hypocretin-1 are attenuated in old rats. Neurobiology of Aging, 2011, 32, 1514-1527.	1.5	13
52	Neuropeptide B Induces Slow Wave Sleep in Mice. Sleep, 2011, 34, 31-37.	0.6	15
53	Sleep-active cells in the cerebral cortex and their role in slow-wave activity. Sleep and Biological Rhythms, 2011, 9, 71-77.	0.5	12
54	Sleep-Active Neuronal Nitric Oxide Synthase-Positive Cells of the Cerebral Cortex: A Local Regulator of Sleep?. Current Topics in Medicinal Chemistry, 2011, 11, 2483-2489.	1.0	11

#	Article	IF	CITATIONS
55	Acute Optogenetic Silencing of Orexin/Hypocretin Neurons Induces Slow-Wave Sleep in Mice. Journal of Neuroscience, 2011, 31, 10529-10539.	1.7	235
56	Afferent Control of the Hypocretin/Orexin Neurons. , 2011, , 153-162.		0
57	Molecular and anatomical signatures of sleep deprivation in the mouse brain. Frontiers in Neuroscience, 2010, 4, 165.	1.4	90
58	Further characterization of sleep-active neuronal nitric oxide synthase neurons in the mouse brain. Neuroscience, 2010, 169, 149-157.	1.1	24
59	Discovery of 1-[3-(4-Bromo-2-methyl-2 <i>H</i> -pyrazol-3-yl)-4-methoxyphenyl]-3-(2,4-difluorophenyl)urea (Nelotanserin) and Related 5-Hydroxytryptamine _{2A} Inverse Agonists for the Treatment of Insomnia. Journal of Medicinal Chemistry, 2010, 53, 1923-1936.	2.9	19
60	Thyrotropin-Releasing Hormone Increases Behavioral Arousal through Modulation of Hypocretin/Orexin Neurons. Journal of Neuroscience, 2009, 29, 3705-3714.	1.7	75
61	Selective loss of GABA _B receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4459-4464.	3.3	115
62	Gene expression in the rat brain during prostaglandin D ₂ and adenosinergicallyâ€induced sleep. Journal of Neurochemistry, 2008, 105, 1480-1498.	2.1	8
63	Sleep Deprivation Effects on Circadian Clock Gene Expression in the Cerebral Cortex Parallel Electroencephalographic Differences among Mouse Strains. Journal of Neuroscience, 2008, 28, 7193-7201.	1.7	131
64	New Developments in Sleep Research: Molecular Genetics, Gene Expression, and Systems Neurobiology. Journal of Neuroscience, 2008, 28, 11814-11818.	1.7	21
65	Identification of a population of sleep-active cerebral cortex neurons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10227-10232.	3.3	176
66	Translational Models of Sleep and Sleep Disorders. , 2008, , 395-456.		2
67	Selective 5HT2A and 5HT6 Receptor Antagonists Promote Sleep in Rats. Sleep, 2008, 31, 34-44.	0.6	107
68	Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. Journal of Clinical Investigation, 2008, 118, 2471-81.	3.9	71
69	Selective loss of GABAB receptors in orexin/hypocretin-producing neurons results in disrupted sleep/wakefulness architecture. Nature Precedings, 2007, , .	0.1	Ο
70	Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip® study. Neuroscience, 2006, 137, 593-605.	1.1	128
71	Gene expression in the rat cerebral cortex: Comparison of recovery sleep and hypnotic-induced sleep. Neuroscience, 2006, 141, 371-378.	1.1	18
72	Orexin Neurons Are Directly and Indirectly Regulated by Catecholamines in a Complex Manner. Journal of Neurophysiology, 2006, 96, 284-298.	0.9	114

#	Article	IF	CITATIONS
73	GABABreceptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus. Journal of Physiology, 2006, 574, 399-414.	1.3	87
74	Cholecystokinin Activates Orexin/Hypocretin Neurons through the Cholecystokinin A Receptor. Journal of Neuroscience, 2005, 25, 7459-7469.	1.7	133
75	Anatomy of the Hypocretin System. , 2005, , 61-75.		4
76	Sleep and aging: molecular approaches within a systems neurobiology context. Advances in Cell Aging and Gerontology, 2005, 17, 165-191.	0.1	0
77	Hypocretin/orexin: maintenance of wakefulness and a multiplicity of other roles. Sleep Medicine Reviews, 2005, 9, 227-230.	3.8	22
78	Molecular genetic advances in sleep research and their relevance to sleep medicine. Sleep, 2005, 28, 357-67.	0.6	17
79	Serotonergic Regulation of the Orexin/Hypocretin Neurons through the 5-HT1A Receptor. Journal of Neuroscience, 2004, 24, 7159-7166.	1.7	184
80	Interaction between the Corticotropin-Releasing Factor System and Hypocretins (Orexins): A Novel Circuit Mediating Stress Response. Journal of Neuroscience, 2004, 24, 11439-11448.	1.7	406
81	cDNA array studies of natural and pharmacologically induced sleep. Sleep and Biological Rhythms, 2004, 2, S31-S33.	0.5	0
82	Comparison of hypocretin/orexin and melanin-concentrating hormone neurons and axonal projections in the embryonic and postnatal rat brain. Journal of Chemical Neuroanatomy, 2004, 27, 165-165.	1.0	0
83	Comparison of hypocretin/orexin and melanin-concentrating hormone neurons and axonal projections in the embryonic and postnatal rat brain. Journal of Chemical Neuroanatomy, 2004, 27, 165-181.	1.0	60
84	Age-related changes in histamine receptor mRNA levels in the mouse brain. Neuroscience Letters, 2004, 355, 81-84.	1.0	35
85	Recovery from Sleep Deprivation. Lung Biology in Health and Disease, 2004, , 485-502.	0.1	2
86	Hibernation. , 2004, , 1113-1117.		1
87	Food- and light-entrained circadian rhythms in rats with hypocretin-2-saporin ablations of the lateral hypothalamus. Brain Research, 2003, 980, 161-168.	1.1	44
88	Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience, 2003, 116, 187-200.	1.1	137
89	Region-specific changes in immediate early gene expression in response to sleep deprivation and recovery sleep in the mouse brain. Neuroscience, 2003, 120, 1115-1124.	1.1	80
90	Transcriptional regulation of the mouse fatty acid amide hydrolase gene. Gene, 2002, 291, 203-210.	1.0	96

#	Article	IF	CITATIONS
91	Age-related decline in hypocretin (orexin) receptor 2 messenger RNA levels in the mouse brain. Neuroscience Letters, 2002, 332, 190-194.	1.0	71
92	A role for cryptochromes in sleep regulation. BMC Neuroscience, 2002, 3, 20.	0.8	265
93	Immune response gene expression increases in the aging murine hippocampus. Journal of Neuroimmunology, 2002, 132, 99-112.	1.1	102
94	Modulation of the promoter region of prepro-hypocretin by $\hat{I}\pm$ -interferon. Gene, 2001, 262, 123-128.	1.0	25
95	Hypocretin-2-Saporin Lesions of the Lateral Hypothalamus Produce Narcoleptic-Like Sleep Behavior in the Rat. Journal of Neuroscience, 2001, 21, 7273-7283.	1.7	249
96	Hypocretin (orexin) in the rat pineal gland: a central transmitter with effects on noradrenaline-induced release of melatonin. European Journal of Neuroscience, 2001, 14, 419-425.	1.2	45
97	Mapping of the mRNAs for the hypocretin/orexin and melanin-concentrating hormone receptors: Networks of overlapping peptide systems. Journal of Comparative Neurology, 2001, 435, 1-5.	0.9	79
98	Sleepy Dogs Don't Lie: A Genetic Disorder Informative About Sleep. Genome Research, 2001, 11, 509-511.	2.4	2
99	Prepro-hypocretin (Prepro-Orexin) Expression is Unaffected by Short-Term Sleep Deprivation in Rats and Mice. Sleep, 2000, 23, 1-8.	0.6	39
100	The hypocretin/orexin ligand–receptor system: implications for sleep and sleep disorders. Trends in Neurosciences, 2000, 23, 359-365.	4.2	419
101	Narcolepsy: a neurodegenerative disease of the hypocretin/orexin system?. Trends in Neurosciences, 2000, 23, 512.	4.2	0
102	What Rest in Flies Can Tell Us about Sleep in Mammals. Neuron, 2000, 26, 295-298.	3.8	17
103	Gene Expression in the Brain across the Hibernation Cycle. Journal of Neuroscience, 1999, 19, 3781-3790.	1.7	88
104	HSP70 expression is increased during the day in a diurnal animal, the golden-mantled ground squirrel Spermophilus lateralis. Molecular and Cellular Biochemistry, 1999, 199, 25-34.	1.4	11
105	Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. Journal of Comparative Neurology, 1999, 415, 145-159.	0.9	636
106	Preprohypocretin (orexin) and prolactin-like immunoreactivity are coexpressed by neurons of the rat lateral hypothalamic area. Neuroscience Letters, 1999, 259, 153-156.	1.0	81
107	Developmental changes in nicotinic receptor mRNAs and responses to nicotine in the suprachiasmatic nucleus and other brain regions. Molecular Brain Research, 1999, 66, 71-82.	2.5	30
108	Nicotine and nicotinic receptors in the circadian system. Psychoneuroendocrinology, 1998, 23, 161-173.	1.3	48

#	Article	IF	CITATIONS
109	Characterization of the Circadian System of NGFI-A and NGFI-A/NGFI-B Deficient Mice. Journal of Biological Rhythms, 1998, 13, 347-357.	1.4	29
110	Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems. Journal of Neuroscience, 1998, 18, 9996-10015.	1.7	3,182
111	The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 322-327.	3.3	3,579
112	Presynaptic and Postsynaptic Actions and Modulation of Neuroendocrine Neurons by a New Hypothalamic Peptide, Hypocretin/Orexin. Journal of Neuroscience, 1998, 18, 7962-7971.	1.7	524
113	Daily variation of CNS gene expression in nocturnal vs. diurnal rodents and in the developing rat brain. Molecular Brain Research, 1997, 48, 73-86.	2.5	22
114	Sequence and Tissue Distribution of a Candidate G-Coupled Receptor Cloned from Rat Hypothalamus. Biochemical and Biophysical Research Communications, 1995, 209, 606-613.	1.0	61
115	GABAA, GABAC, and NMDA receptor subunit expression in the suprachiasmatic nucleus and other brain regions. Molecular Brain Research, 1995, 28, 239-250.	2.5	92
116	Nicotine administration differentially affects gene expression in the maternal and fetal circadian clock. Developmental Brain Research, 1995, 84, 46-54.	2.1	32
117	C-fos mRNA increases in the ground squirrel suprachiasmatic nucleus during arousal from hibernation. Neuroscience Letters, 1994, 165, 117-121.	1.0	35
118	Ontogeny of photic-induced c-fos mRNA expression in rat suprachiasmatic nuclei. NeuroReport, 1994, 5, 2683-2687.	0.6	43
119	Light-induced gene expression in the suprachiasmatic nucleus of young and aging rats. Neurobiology of Aging, 1993, 14, 441-446.	1.5	84
120	Sleep and Mammalian Hibernation: Homologous Adaptations and Homologous Processes?. Sleep, 1993, 16, 372-386.	0.6	61
121	Immediate Early Gene Expression in Brain During Sleep Deprivation: Preliminary Observations. Sleep, 1993, 16, 1-7.	0.6	112
122	Melatonin influences Fos expression in the rat suprachiasmatic. Molecular Brain Research, 1992, 16, 47-56.	2.5	50
123	Circadian and light-induced expression of immediate early gene mRNAs in the rat suprachiasmatic nucleus. Molecular Brain Research, 1992, 15, 281-290.	2.5	105
124	Cholinergically induced REM sleep triggers Fos-like immunoreactivity in dorsolateral pontine regions associated with REM sleep. Brain Research, 1992, 580, 351-357.	1.1	71
125	Monoamine and metabolite levels in the cerebrospinal fluid of hibernating and euthermic marmots. Journal of Sleep Research, 1992, 1, 45-50.	1.7	4
126	Influence of running wheel activity on free-running sleep/wake and drinking circadian rhythms in mice. Physiology and Behavior, 1991, 50, 373-378.	1.0	106

#	Article	IF	CITATIONS
127	Regional changes in central monoamine and metabolite levels during the hibernation cycle in the golden-mantled ground squirrel. Brain Research, 1991, 563, 215-220.	1.1	20
128	Prostaglandin E2 levels in cerebrospinal fluid of normal and narcoleptic dogs. Biological Psychiatry, 1990, 28, 904-910.	0.7	11
129	Suprachiasmatic nuclei influence hibernation rhythms of golden-mantled ground squirrels. Brain Research, 1990, 509, 111-118.	1.1	43
130	Restriction fragment length polymorphism in canine narcolepsy. Immunogenetics, 1989, 29, 124-126.	1.2	14
131	Narcolepsy without unique MHC class II antigen association: Studies in the canine model. Human Immunology, 1989, 25, 27-35.	1.2	31
132	Brain dopamine receptor levels elevated in canine narcolepsy. Brain Research, 1987, 402, 44-48.	1.1	60
133	Modulation of activity of the striatal dopaminergic system during the hibernation cycle. Journal of Neuroscience, 1987, 7, 2732-2736.	1.7	9
134	HLA-DR restriction-fragment-length polymorphisms in narcolepsy. Journal of Neuroscience Research, 1987, 18, 239-244.	1.3	13
135	Evidence for excessive sleepiness in canine narcoleptics. Electroencephalography and Clinical Neurophysiology, 1986, 64, 447-454.	0.3	34
136	Brain Benzodiazepine Receptor Characteristics in Canine Narcolepsy. Sleep, 1986, 9, 111-115.	0.6	8
137	Sleep Fragmentation in Canine Narcolepsy. Sleep, 1986, 9, 116-119.	0.6	46
138	Muscarinic Cholinergic Receptors and the Canine Model of Narcolepsy. Sleep, 1986, 9, 102-106.	0.6	128
139	Biogenic Amine Concentrations in the Brains of Normal and Narcoleptic Canines: Current Status. Sleep, 1986, 9, 107-110.	0.6	66
140	Heart Rate and Blood Pressure Changes Associated with Cataplexy in Canine Narcolepsy. Sleep, 1986, 9, 216-221.	0.6	21
141	Reciprocal interaction revisited. Behavioral and Brain Sciences, 1986, 9, 411-412.	0.4	0
142	Focal Increases of White Matter Glucose Utilization Produced by Electrical Stimulation of Rat Motor Cortex. Journal of Cerebral Blood Flow and Metabolism, 1983, 3, 67-70.	2.4	7
143	Relative 2-deoxyglucose uptake of the paratrigeminal nucleus increases during hibernation. Brain Research, 1983, 262, 117-123.	1.1	17
144	Metabolic activation of the brachium conjunctivum during induced hypothermia. Brain Research, 1983, 269, 168-171.	1.1	2

#	Article	IF	CITATIONS
145	The relationship of local cerebral glucose utilization to optical density ratios. Brain Research, 1983, 263, 97-103.	1.1	123
146	Autoradiographic patterns of hippocampal metabolism during induced hypothermia. Neuroscience Letters, 1982, 34, 233-239.	1.0	0
147	The 2-deoxyglucose neuroanatomical mapping technique. Trends in Neurosciences, 1981, 4, 144-148.	4.2	10
148	The chromosomes of a longâ€isolated monotypic butterfly genus: <i>Tellervo zoilus</i> (Nymphalidae:) Tj ETQqC	0 0 rgBT	/Oyerlock 10

Novel pathways for stimulant development II: the hypocretin/orexin system. , 0, , 165-183.