Franciska T. de Vries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661083/publications.pdf

Version: 2024-02-01

61984 133252 9,895 61 43 59 citations h-index g-index papers 69 69 69 11631 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9, 3033.	12.8	992
2	Going underground: root traits as drivers of ecosystem processes. Trends in Ecology and Evolution, 2014, 29, 692-699.	8.7	881
3	Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 2015, 21, 973-985.	9.5	641
4	Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14296-14301.	7.1	520
5	Abiotic drivers and plant traits explain landscapeâ€scale patterns in soil microbial communities. Ecology Letters, 2012, 15, 1230-1239.	6.4	511
6	Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2012, 2, 276-280.	18.8	480
7	Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry, 2006, 38, 2092-2103.	8.8	453
8	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
9	Harnessing rhizosphere microbiomes for drought-resilient crop production. Science, 2020, 368, 270-274.	12.6	442
10	Controls on soil microbial community stability under climate change. Frontiers in Microbiology, 2013, 4, 265.	3.5	353
11	Plant root exudation under drought: implications for ecosystem functioning. New Phytologist, 2020, 225, 1899-1905.	7.3	296
12	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	12.6	248
13	Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytologist, 2017, 215, 1413-1424.	7.3	213
14	Linking soil biodiversity and agricultural soil management. Current Opinion in Environmental Sustainability, 2012, 4, 523-528.	6.3	190
15	Belowâ€ground connections underlying aboveâ€ground food production: a framework for optimising ecological connections in the rhizosphere. Journal of Ecology, 2017, 105, 913-920.	4.0	177
16	Hierarchical responses of plant–soil interactions to climate change: consequences for the global carbon cycle. Journal of Ecology, 2013, 101, 334-343.	4.0	173
17	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	7.1	159
18	Tracking, targeting, and conserving soil biodiversity. Science, 2021, 371, 239-241.	12.6	151

#	Article	IF	CITATIONS
19	Changes in rootâ€exudateâ€induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytologist, 2019, 224, 132-145.	7.3	150
20	Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology, 2018, 3, 189-196.	13.3	136
21	Grassland species root response to drought: consequences for soil carbon and nitrogen availability. Plant and Soil, 2016, 409, 297-312.	3.7	110
22	Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytologist, 2018, 219, 574-587.	7.3	107
23	Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland. PLoS ONE, 2012, 7, e51201.	2.5	105
24	Nitrogen losses from two grassland soils with different fungal biomass. Soil Biology and Biochemistry, 2011, 43, 997-1005.	8.8	104
25	Root traits explain rhizosphere fungal community composition among temperate grassland plant species. New Phytologist, 2021, 229, 1492-1507.	7.3	102
26	Plant–microbial linkages and ecosystem nitrogen retention: lessons for sustainable agriculture. Frontiers in Ecology and the Environment, 2012, 10, 425-432.	4.0	101
27	Towards an integrative understanding of soil biodiversity. Biological Reviews, 2020, 95, 350-364.	10.4	97
28	Legacy effects of drought on plant growth and the soil food web. Oecologia, 2012, 170, 821-833.	2.0	94
29	Plant community controls on shortâ€ŧerm ecosystem nitrogen retention. New Phytologist, 2016, 210, 861-874.	7. 3	92
30	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	5.8	90
31	Fungal biomass in pastures increases with age and reduced N input. Soil Biology and Biochemistry, 2007, 39, 1620-1630.	8.8	83
32	Eating from the same plate? Revisiting the role of labile carbon inputs in the soil food web. Soil Biology and Biochemistry, 2016, 102, 4-9.	8.8	81
33	Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators, 2016, 69, 213-223.	6.3	80
34	Heavy-Metal Concentrations in Small Mammals from a Diffusely Polluted Floodplain: Importance of Species- and Location-Specific Characteristics. Archives of Environmental Contamination and Toxicology, 2007, 52, 603-613.	4.1	79
35	Simple measures of climate, soil properties and plant traits predict nationalâ€scale grassland soil carbon stocks. Journal of Applied Ecology, 2015, 52, 1188-1196.	4.0	79
36	Root functional traits explain root exudation rate and composition across a range of grassland species. Journal of Ecology, 2022, 110, 21-33.	4.0	79

#	Article	IF	CITATIONS
37	Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiology Ecology, 2016, 92, fiw091.	2.7	76
38	Within-trophic group interactions of bacterivorous nematode species and their effects on the bacterial community and nitrogen mineralization. Oecologia, 2005, 142, 428-439.	2.0	73
39	Urban and agricultural soils: conflicts and trade-offs in the optimization of ecosystem services. Urban Ecosystems, 2014, 17, 239-253.	2.4	66
40	A mixture of grass and clover combines the positive effects of both plant species on selected soil biota. Applied Soil Ecology, 2009, 42, 254-263.	4.3	63
41	Deciphering the role of specialist and generalist plant–microbial interactions as drivers of plant–soil feedback. New Phytologist, 2022, 234, 1929-1944.	7.3	63
42	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
43	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	5.8	49
44	Comparing root exudate collection techniques: An improved hybrid method. Soil Biology and Biochemistry, 2021, 161, 108391.	8.8	49
45	Drought decreases incorporation of recent plant photosynthate into soil food webs regardless of their trophic complexity. Global Change Biology, 2019, 25, 3549-3561.	9.5	37
46	Disentangling plant and soil microbial controls on carbon and nitrogen loss in grassland mesocosms. Journal of Ecology, 2015, 103, 629-640.	4.0	34
47	Plant Genetic Networks Shaping Phyllosphere Microbial Community. Trends in Genetics, 2021, 37, 306-316.	6.7	29
48	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	5.3	29
49	High turnover of fungal hyphae in incubation experiments. FEMS Microbiology Ecology, 2009, 67, 389-396.	2.7	28
50	Toward a global platform for linking soil biodiversity data. Frontiers in Ecology and Evolution, 0, 3, .	2.2	24
51	Forest fire induces shortâ€ŧerm shifts in soil food webs with consequences for carbon cycling. Ecology Letters, 2021, 24, 438-450.	6.4	22
52	Applying the Aboveground-Belowground Interaction Concept in Agriculture: Spatio-Temporal Scales Matter. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	20
53	Soil organic carbon dynamics matching ecological equilibrium theory. Ecology and Evolution, 2018, 8, 11169-11178.	1.9	18
54	Impacts of Climate Change on Soil Microbial Communities and Their Functioning. Developments in Soil Science, 2018, 35, 111-129.	0.5	14

#	Article	IF	CITATIONS
55	Local stability properties of complex, speciesâ€rich soil food webs with functional block structure. Ecology and Evolution, 2021, 11, 16070-16081.	1.9	11
56	Knowledge needs, available practices, and future challenges in agricultural soils. Soil, 2016, 2, 511-521.	4.9	10
57	Glacier forelands reveal fundamental plant and microbial controls on shortâ€ŧerm ecosystem nitrogen retention. Journal of Ecology, 2021, 109, 3710-3723.	4.0	9
58	Are researchers following best storage practices for measuring soil biochemical properties?. Soil, 2021, 7, 95-106.	4.9	7
59	Explanations for nitrogen decline. Science, 2022, 376, 1169-1170.	12.6	4
60	Soil Biodiversity and Ecosystem Functioning. , 2017, , 119-140.		1
61	Dirt Is Not Dead: How Land Use Affects the Living Soil. Frontiers for Young Minds, 0, 8, .	0.8	0