Masahiro Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5660323/publications.pdf

Version: 2024-02-01

76 papers

11,441 citations

42 h-index 74 g-index

83 all docs 83 docs citations

83 times ranked 14493 citing authors

#	Article	IF	CITATIONS
1	Enterocyte–innate lymphoid cell crosstalk drives early IFN-γ-mediated control of Cryptosporidium. Mucosal Immunology, 2022, 15, 362-372.	2.7	26
2	Structural basis of membrane recognition of <i>Toxoplasma gondii</i> vacuole by Irgb6. Life Science Alliance, 2022, 5, e202101149.	1.3	7
3	Anti-Toxoplasma host defense systems and the parasitic counterdefense mechanisms. Parasitology International, 2022, 89, 102593.	0.6	7
4	<i>Toxoplasma gondii</i> <scp>GRA60</scp> is an effector protein that modulates host cell autonomous immunity and contributes to virulence. Cellular Microbiology, 2021, 23, e13278.	1.1	19
5	Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins. Nature Communications, 2021, 12, 496.	5.8	51
6	Hepatitis C virus modulates signal peptide peptidase to alter host protein processing. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3.3	6
7	Uncovering a novel role of PLC \hat{i}^2 4 in selectively mediating TCR signaling in CD8+ but not CD4+ T cells. Journal of Experimental Medicine, 2021, 218, .	4.2	7
8	Cell-autonomous <i>Toxoplasma</i> killing program requires Irgm2 but not its microbe vacuolar localization. Life Science Alliance, 2021, 4, e202000960.	1.3	10
9	An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell, 2021, 184, 3452-3466.e18.	13.5	205
10	Plasmodium UIS3 avoids host cell-autonomous exclusion that requires GABARAPs but not LC3 and autophagy. Parasitology International, 2021, 83, 102335.	0.6	2
11	Chlamydia evasion of neutrophil host defense results in NLRP3 dependent myeloid-mediated sterile inflammation through the purinergic P2X7 receptor. Nature Communications, 2021, 12, 5454.	5.8	18
12	Macrophages Demonstrate Guanylate-Binding Protein-Dependent and Bacterial Strain-Dependent Responses to Francisella tularensis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 784101.	1.8	3
13	T cell-derived interferon- \hat{l}^3 is required for host defense to. Parasitology International, 2020, 75, 102049.	0.6	15
14	Role of Gate-16 and Gabarap in Prevention of Caspase-11-Dependent Excess Inflammation and Lethal Endotoxic Shock. Frontiers in Immunology, 2020, 11, 561948.	2.2	17
15	Irgm2 and Gateâ€16 cooperatively dampen Gramâ€negative bacteriaâ€induced caspaseâ€11 response. EMBO Reports, 2020, 21, e50829.	2.0	45
16	Guanylate Binding Proteins Restrict Leishmania donovani Growth in Nonphagocytic Cells Independent of Parasitophorous Vacuolar Targeting. MBio, 2020, 11 , .	1.8	12
17	Human GBP1 Differentially Targets Salmonella and Toxoplasma to License Recognition of Microbial Ligands and Caspase-Mediated Death. Cell Reports, 2020, 32, 108008.	2.9	58
18	Decision by injection without infection. Journal of Experimental Medicine, 2020, 217, .	4.2	0

#	Article	IF	Citations
19	NaÃ ⁻ ve CD8 T cell IFNÎ ³ responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway and Toxoplasma gondii ROP5. PLoS Pathogens, 2020, 16, e1008327.	2.1	16
20	Guanylate-Binding Proteins Are Critical for Effective Control of Francisella tularensis Strains in a Mouse Co-Culture System of Adaptive Immunity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 594063.	1.8	5
21	Initial phospholipid-dependent Irgb6 targeting to <i>Toxoplasma gondii</i> vacuoles mediates host defense. Life Science Alliance, 2020, 3, e201900549.	1.3	19
22	Cholera toxin B induces interleukin- $\hat{\Pi}^2$ production from resident peritoneal macrophages through the pyrin inflammasome as well as the NLRP3 inflammasome. International Immunology, 2019, 31, 657-668.	1.8	13
23	Metabolic adaptation to glycolysis is a basic defense mechanism of macrophages for <i>Mycobacterium tuberculosis</i> infection. International Immunology, 2019, 31, 781-793.	1.8	37
24	Human <scp>GBP</scp> 1 is a microbeâ€specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO Journal, 2019, 38, e100926.	3.5	170
25	Toxoplasma Effector GRA15-Dependent Suppression of IFN-γ-Induced Antiparasitic Response in Human Neurons. Frontiers in Cellular and Infection Microbiology, 2019, 9, 140.	1.8	17
26	CXCR4 regulates Plasmodium development in mouse and human hepatocytes. Journal of Experimental Medicine, 2019, 216, 1733-1748.	4.2	18
27	Innate, adaptive, and cell-autonomous immunity against Toxoplasma gondii infection. Experimental and Molecular Medicine, 2019, 51, 1-10.	3.2	72
28	Fungal ligands released by innate immune effectors promote inflammasome activation during Aspergillus fumigatus infection. Nature Microbiology, 2019, 4, 316-327.	5.9	53
29	<scp>LPS</scp> targets host guanylateâ€binding proteins to the bacterial outer membrane for nonâ€canonical inflammasome activation. EMBO Journal, 2018, 37, .	3.5	184
30	A Nonpyroptotic IFN-γ–Triggered Cell Death Mechanism in Nonphagocytic Cells Promotes <i>Salmonella </i> Clearance In Vivo. Journal of Immunology, 2018, 200, 3626-3634.	0.4	23
31	Host immune responses to <i>Toxoplasma gondii</i> . International Immunology, 2018, 30, 113-119.	1.8	158
32	Introduction: Interactions Between the Immune System and Parasites Special Issue. International Immunology, 2018, 30, 91-91.	1.8	1
33	Toxoplasma Effector TgIST Targets Host IDO1 to Antagonize the IFN-Î ³ -Induced Anti-parasitic Response in Human Cells. Frontiers in Immunology, 2018, 9, 2073.	2.2	32
34	Inducible Nitric Oxide Synthase Is a Key Host Factor for <i>Toxoplasma</i> ORA15-Dependent Disruption of the Gamma Interferon-Induced Antiparasitic Human Response. MBio, 2018, 9, .	1.8	33
35	Constitutive Interferon Maintains GBP Expression Required for Release of Bacterial Components Upstream of Pyroptosis and Anti-DNA Responses. Cell Reports, 2018, 24, 155-168.e5.	2.9	77
36	Guanylate binding proteins facilitate caspase-11-dependent pyroptosis in response to type 3 secretion system-negative Pseudomonas aeruginosa. Cell Death Discovery, 2018, 4, 3.	2.0	51

3

#	Article	IF	Citations
37	Essential role for GABARAP autophagy proteins in interferon-inducible GTPase-mediated host defense. Nature Immunology, 2017, 18, 899-910.	7.0	85
38	Inflammasome Activation by Bacterial Outer Membrane Vesicles Requires Guanylate Binding Proteins. MBio, $2017,8,.$	1.8	122
39	Guanylate Binding Proteins Regulate Inflammasome Activation in Response to Hyperinjected Yersinia Translocon Components. Infection and Immunity, 2017, 85, .	1.0	35
40	Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases. Cell Host and Microbe, 2017, 22, 74-85.e7.	5.1	90
41	IFN-Î ³ extends the immune functions of Guanylate Binding Proteins to inflammasome-independent antibacterial activities during Francisella novicida infection. PLoS Pathogens, 2017, 13, e1006630.	2.1	41
42	Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia. Nature, 2016, 532, 117-121.	13.7	167
43	IRGB10 Liberates Bacterial Ligands for Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes. Cell, 2016, 167, 382-396.e17.	13.5	237
44	Fundamental Roles of the Golgi-Associated Toxoplasma Aspartyl Protease, ASP5, at the Host-Parasite Interface. PLoS Pathogens, 2015, 11, e1005211.	2.1	108
45	Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nature Immunology, 2015, 16, 476-484.	7.0	291
46	p62 Plays a Specific Role in Interferon- \hat{l}^3 -Induced Presentation of a Toxoplasma Vacuolar Antigen. Cell Reports, 2015, 13, 223-233.	2.9	74
47	The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nature Immunology, 2015, 16, 467-475.	7.0	291
48	mTOR Complex Signaling through the SEMA4A–Plexin B2 Axis Is Required for Optimal Activation and Differentiation of CD8+ T Cells. Journal of Immunology, 2015, 195, 934-943.	0.4	39
49	Guanylate Binding Proteins Enable Rapid Activation of Canonical and Noncanonical Inflammasomes in Chlamydia-Infected Macrophages. Infection and Immunity, 2015, 83, 4740-4749.	1.0	126
50	RabGDlα is a negative regulator of interferon-γ–inducible GTPase-dependent cell-autonomous immunity to <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4581-90.	3.3	30
51	The E2-Like Conjugation Enzyme Atg3 Promotes Binding of IRG and Gbp Proteins to Chlamydia- and Toxoplasma-Containing Vacuoles and Host Resistance. PLoS ONE, 2014, 9, e86684.	1.1	90
52	Guanylate binding proteins promote caspase-11–dependent pyroptosis in response to cytoplasmic LPS. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6046-6051.	3.3	289
53	Role of Mouse and Human Autophagy Proteins in IFN-γ–Induced Cell-Autonomous Responses against <i>Toxoplasma gondii</i> . Journal of Immunology, 2014, 192, 3328-3335.	0.4	120
54	Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature, 2014, 509, 366-370.	13.7	416

#	Article	IF	CITATIONS
55	Selective and strain-specific NFAT4 activation by the <i>Toxoplasma gondii</i> polymorphic dense granule protein GRA6. Journal of Experimental Medicine, 2014, 211, 2013-2032.	4.2	125
56	Subversion of host cellular functions by the apicomplexan parasites. FEMS Microbiology Reviews, 2013, 37, 607-631.	3.9	92
57	Pathogen Recognition Receptors: Ligands and Signaling Pathways by Toll-Like Receptors. International Reviews of Immunology, 2013, 32, 116-133.	1.5	156
58	Ifit1 Inhibits Japanese Encephalitis Virus Replication through Binding to 5′ Capped 2′-O Unmethylated RNA. Journal of Virology, 2013, 87, 9997-10003.	1.5	106
59	Inhibition of ATF6 \hat{i}^2 -dependent host adaptive immune response by a Toxoplasma virulence factor ROP18. Virulence, 2012, 3, 77-80.	1.8	18
60	A Cluster of Interferon- \hat{l}^3 -Inducible p65 GTPases Plays a Critical Role in Host Defense against Toxoplasma gondii. Immunity, 2012, 37, 302-313.	6.6	311
61	ATF6 \hat{i}^2 is a host cellular target of the <i>Toxoplasma gondii</i> virulence factor ROP18. Journal of Experimental Medicine, 2011, 208, 1533-1546.	4.2	133
62	A Method for the Generation of Conditional Gene-Targeted Mice. Methods in Molecular Biology, 2011, 757, 399-410.	0.4	1
63	Current Views of Toll-Like Receptor Signaling Pathways. Gastroenterology Research and Practice, 2010, 2010, 1-8.	0.7	184
64	A single polymorphic amino acid on <i>Toxoplasma gondii</i> kinase ROP16 determines the direct and strain-specific activation of Stat3. Journal of Experimental Medicine, 2009, 206, 2747-2760.	4.2	215
65	Role of nuclear $\hat{\mathbb{I}}^{\mathbb{B}}$ proteins in the regulation of host immune responses. Journal of Infection and Chemotherapy, 2008, 14, 265-269.	0.8	55
66	Class-specific Regulation of Pro-inflammatory Genes by MyD88 Pathways and lκBζ. Journal of Biological Chemistry, 2008, 283, 12468-12477.	1.6	96
67	Regulation of host immune responses by nuclear I.KAPPA.B proteins. Inflammation and Regeneration, 2008, 28, 516-521.	1.5	0
68	Enhanced TLR-mediated NF-IL6–dependent gene expression by Trib1 deficiency. Journal of Experimental Medicine, 2007, 204, 2233-2239.	4.2	73
69	Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nature Immunology, 2006, 7, 962-970.	7. O	249
70	The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6299-6304.	3.3	238
71	The Nuclear IÎB Protein IÎBNS Selectively Inhibits Lipopolysaccharide-Induced IL-6 Production in Macrophages of the Colonic Lamina Propria. Journal of Immunology, 2005, 174, 3650-3657.	0.4	172
72	Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunology, 2004, 5, 1061-1068.	7.0	894

#	Article	IF	CITATIONS
73	Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein llºBl¶. Nature, 2004, 430, 218-222.	13.7	445
74	TRAM is specifically involved in the Toll-like receptor 4–mediated MyD88-independent signaling pathway. Nature Immunology, 2003, 4, 1144-1150.	7.0	919
75	Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway. Science, 2003, 301, 640-643.	6.0	2,808
76	Alteration of Cholesterol Metabolism Induced by Anabolic Steroid, Oxandrolone, Administration to Rats. Endocrinologia Japonica, 1970, 17, 195-202.	0.5	3