Scott G Kitchen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/565996/publications.pdf

Version: 2024-02-01

29 papers 1,795 citations

304743

22

h-index

434195 31 g-index

31 all docs

31 docs citations

31 times ranked

2926 citing authors

#	Article	IF	CITATIONS
1	ApoA-I mimetics reduce systemic and gut inflammation in chronic treated HIV. PLoS Pathogens, 2022, 18, e1010160.	4.7	10
2	Robust CAR-T memory formation and function via hematopoietic stem cell delivery. PLoS Pathogens, 2021, 17, e1009404.	4.7	19
3	Primary, Recall, and Decay Kinetics of SARS-CoV-2 Vaccine Antibody Responses. ACS Nano, 2021, 15, 11180-11191.	14.6	60
4	Apolipoprotein A-I mimetics attenuate macrophage activation in chronic treated HIV. Aids, 2021, 35, 543-553.	2.2	8
5	Engineering CAR T Cells to Target the HIV Reservoir. Frontiers in Cellular and Infection Microbiology, 2020, 10, 410.	3.9	29
6	Development of Hematopoietic Stem Cell-Engineered Invariant Natural Killer T Cell Therapy for Cancer. Cell Stem Cell, 2019, 25, 542-557.e9.	11.1	48
7	Lentiviral Vector-Based Dendritic Cell Vaccine Suppresses HIV Replication in Humanized Mice. Molecular Therapy, 2019, 27, 960-973.	8.2	24
8	The Use of the Humanized Mouse Model in Gene Therapy and Immunotherapy for HIV and Cancer. Frontiers in Immunology, 2018, 9, 746.	4.8	31
9	Chimeric antigen receptor engineered stem cells: a novel HIV therapy. Immunotherapy, 2017, 9, 401-410.	2.0	17
10	New approaches for the enhancement of chimeric antigen receptors for the treatment of HIV. Translational Research, 2017, 187, 83-92.	5.0	13
11	Long-term persistence and function of hematopoietic stem cell-derived chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS. PLoS Pathogens, 2017, 13, e1006753.	4.7	91
12	Engineering HIV-Specific Immunity with Chimeric Antigen Receptors. AIDS Patient Care and STDs, 2016, 30, 556-561.	2.5	14
13	HIV-1-Specific Chimeric Antigen Receptors Based on Broadly Neutralizing Antibodies. Journal of Virology, 2016, 90, 6999-7006.	3.4	80
14	Propagating Humanized BLT Mice for the Study of Human Immunology and Immunotherapy. Stem Cells and Development, 2016, 25, 1863-1873.	2.1	37
15	Stem-cell Based Engineered Immunity Against HIV Infection in the Humanized Mouse Model. Journal of Visualized Experiments, $2016, , .$	0.3	12
16	Targeting type I interferon–mediated activation restores immune function in chronic HIV infection. Journal of Clinical Investigation, 2016, 127, 260-268.	8.2	153
17	Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence. PLoS Pathogens, 2016, 12, e1005356.	4.7	49
18	HIV-specific Immunity Derived From Chimeric Antigen Receptor-engineered Stem Cells. Molecular Therapy, 2015, 23, 1358-1367.	8.2	111

SCOTT G KITCHEN

#	Article	IF	CITATION
19	Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell, 2015, 163, 1716-1729.	28.9	322
20	Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector. Molecular Therapy - Nucleic Acids, 2015, 4, e236.	5.1	51
21	Stem-Cell-Based Gene Therapy for HIV Infection. Viruses, 2014, 6, 1-12.	3.3	22
22	CD4 Ligation on Human Blood Monocytes Triggers Macrophage Differentiation and Enhances HIV Infection. Journal of Virology, 2014, 88, 9934-9946.	3.4	63
23	In Vivo Suppression of HIV by Antigen Specific T Cells Derived from Engineered Hematopoietic Stem Cells. PLoS Pathogens, 2012, 8, e1002649.	4.7	74
24	Stem cell-based anti-HIV gene therapy. Virology, 2011, 411, 260-272.	2.4	47
25	Engineering Antigen-Specific T Cells from Genetically Modified Human Hematopoietic Stem Cells in Immunodeficient Mice. PLoS ONE, 2009, 4, e8208.	2.5	51
26	The CD4 molecule on CD8+ T lymphocytes directly enhances the immune response to viral and cellular antigens. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3794-3799.	7.1	44
27	CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8727-8732.	7.1	81
28	Activation of CD8 T cells induces expression of CD4, which functions as a chemotactic receptor. Blood, 2002, 99, 207-212.	1.4	56
29	Generation of HIV latency during thymopoiesis. Nature Medicine, 2001, 7, 459-464.	30.7	165