List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5659948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of the ATX/LPA/LPARs axis induces a fibrotic response in skeletal muscle. Matrix Biology, 2022, 109, 121-139.	3.6	8
2	The linkage between inflammation and fibrosis in muscular dystrophies: The axis autotaxin–lysophosphatidic acid as a new therapeutic target?. Journal of Cell Communication and Signaling, 2021, 15, 317-334.	3.4	15
3	Reduced RECK levels accelerate skeletal muscle differentiation, improve muscle regeneration, and decrease fibrosis. FASEB Journal, 2021, 35, e21503.	0.5	3
4	Role of Matricellular CCN Proteins in Skeletal Muscle: Focus on CCN2/CTGF and Its Regulation by Vasoactive Peptides. International Journal of Molecular Sciences, 2021, 22, 5234.	4.1	9
5	PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cellular Signalling, 2021, 84, 110036.	3.6	24
6	Driving fibrosis in neuromuscular diseases: Role and regulation of Connective tissue growth factor (CCN2/CTGF). Matrix Biology Plus, 2021, 11, 100059.	3.5	18
7	Role of hypoxia in skeletal muscle fibrosis: Synergism between hypoxia and TGF-β signaling upregulates CCN2/CTGF expression specifically in muscle fibers. Matrix Biology, 2020, 87, 48-65.	3.6	45
8	Angiotensin-(1-7) Prevents Lipopolysaccharide-Induced Autophagy via the Mas Receptor in Skeletal Muscle. International Journal of Molecular Sciences, 2020, 21, 9344.	4.1	8
9	HIF-hypoxia signaling in skeletal muscle physiology and fibrosis. Journal of Cell Communication and Signaling, 2020, 14, 147-158.	3.4	34
10	TGF-β-driven downregulation of the Wnt/β-Catenin transcription factor TCF7L2/TCF4 in PDGFRα+ fibroblasts. Journal of Cell Science, 2020, 133, .	2.0	26
11	Adherent muscle connective tissue fibroblasts are phenotypically and biochemically equivalent to stromal fibro/adipogenic progenitors. Matrix Biology Plus, 2019, 2, 100006.	3.5	37
12	The cross-talk between TGF-β and PDGFRα signaling pathways regulates stromal fibro/adipogenic progenitors' fate. Journal of Cell Science, 2019, 132, .	2.0	70
13	CTGF/CCN2 from Skeletal Muscle to Nervous System: Impact on Neurodegenerative Diseases. Molecular Neurobiology, 2019, 56, 5911-5916.	4.0	27
14	Skeletal Muscle System. , 2019, , 169-190.		2
15	Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biology, 2019, 82, 20-37.	3.6	52
16	Blockade of Bradykinin receptors worsens the dystrophic phenotype of mdx mice: differential effects for B1 and B2 receptors. Journal of Cell Communication and Signaling, 2018, 12, 589-601.	3.4	17
17	Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Skeletal Muscle, 2018, 8, 5.	4.2	28
18	The pro-fibrotic connective tissue growth factor (CTGF/CCN2) correlates with the number of necrotic-regenerative foci in dystrophic muscle. Journal of Cell Communication and Signaling, 2018, 12, 413-421.	3.4	40

#	Article	IF	CITATIONS
19	Expression of CTGF/CCN2 in response to LPA is stimulated by fibrotic extracellular matrix via the integrin/FAK axis. American Journal of Physiology - Cell Physiology, 2018, 314, C415-C427.	4.6	28
20	The inhibition of CTGF/CCN2 activity improves muscle and locomotor function in a murine ALS model. Human Molecular Genetics, 2018, 27, 2913-2926.	2.9	29
21	Andrographolide Ameliorates Inflammation and Fibrogenesis and Attenuates Inflammasome Activation in Experimental Non-Alcoholic Steatohepatitis. Scientific Reports, 2017, 7, 3491.	3.3	68
22	Fibro/adipogenic progenitors safeguard themselves: a novel mechanism to reduce fibrosis is discovered. Journal of Cell Communication and Signaling, 2017, 11, 77-78.	3.4	5
23	Analysis of Pathological Activities of CCN2/CTGF in Muscle Dystrophy. Methods in Molecular Biology, 2017, 1489, 513-521.	0.9	5
24	ALS skeletal muscle shows enhanced TGF-β signaling, fibrosis and induction of fibro/adipogenic progenitor markers. PLoS ONE, 2017, 12, e0177649.	2.5	94
25	Diet-Induced Nonalcoholic Fatty Liver Disease Is Associated with Sarcopenia and Decreased Serum Insulin-Like Growth Factor-1. Digestive Diseases and Sciences, 2016, 61, 3190-3198.	2.3	42
26	Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne muscular dystrophy. Neurobiology of Disease, 2016, 86, 109-120.	4.4	11
27	Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy via the Mas receptor. DMM Disease Models and Mechanisms, 2016, 9, 441-9.	2.4	65
28	Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell and Tissue Research, 2016, 364, 647-660.	2.9	117
29	Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1–7) through a p38 MAPK-dependent mechanism. Clinical Science, 2015, 129, 461-476.	4.3	57
30	Transforming growth factor typeâ€Î² inhibits Mas receptor expression in fibroblasts but not in myoblasts or differentiated myotubes; Relevance to fibrosis associated to muscular dystrophies. BioFactors, 2015, 41, 111-120.	5.4	9
31	RECK-Mediated \hat{I}^2 1-Integrin Regulation by TGF- \hat{I}^2 1 Is Critical for Wound Contraction in Mice. PLoS ONE, 2015, 10, e0135005.	2.5	13
32	SMAD3 and SP1/SP3 Transcription Factors Collaborate to Regulate Connective Tissue Growth Factor Gene Expression in Myoblasts in Response to Transforming Growth Factor β. Journal of Cellular Biochemistry, 2015, 116, 1880-1887.	2.6	22
33	Angiotensin-(1–7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism. Clinical Science, 2015, 128, 307-319.	4.3	70
34	Heparan sulfate provides a mechanism to respond to FGFR2b and control regenerative expansion. Journal of Cell Communication and Signaling, 2015, 9, 89-89.	3.4	1
35	Angiotensins as therapeutic targets beyond heart disease. Trends in Pharmacological Sciences, 2015, 36, 310-320.	8.7	85
36	The angiotensin-(1–7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice. Pflugers Archiv European Journal of Physiology, 2015, 467, 1975-1984.	2.8	53

#	Article	IF	CITATIONS
37	Glypican-1 regulates myoblast response to HGF via Met in a lipid raft-dependent mechanism: effect on migration of skeletal muscle precursor cells. Skeletal Muscle, 2014, 4, 5.	4.2	28
38	Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling. Human Molecular Genetics, 2014, 23, 1237-1249.	2.9	143
39	Wnt Signaling in Skeletal Muscle Dynamics: Myogenesis, Neuromuscular Synapse and Fibrosis. Molecular Neurobiology, 2014, 49, 574-589.	4.0	107
40	Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy. Skeletal Muscle, 2014, 4, 7.	4.2	80
41	Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis. Skeletal Muscle, 2014, 4, 6.	4.2	33
42	ACE2 Is Augmented in Dystrophic Skeletal Muscle and Plays a Role in Decreasing Associated Fibrosis. PLoS ONE, 2014, 9, e93449.	2.5	51
43	Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2). Cell and Tissue Research, 2013, 353, 173-187.	2.9	67
44	Role of skeletal muscle proteoglycans during myogenesis. Matrix Biology, 2013, 32, 289-297.	3.6	63
45	Transforming growth factor type beta 1 increases the expression of angiotensin II receptor type 2 by a SMAD―and p38 MAPKâ€dependent mechanism in skeletal muscle. BioFactors, 2013, 39, 467-475.	5.4	29
46	Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Human Molecular Genetics, 2013, 22, 4938-4951.	2.9	118
47	Role of proteoglycans in the regulation of the skeletal muscle fibrotic response. FEBS Journal, 2013, 280, 4109-4117.	4.7	35
48	Mice Long-Term High-Fat Diet Feeding Recapitulates Human Cardiovascular Alterations: An Animal Model to Study the Early Phases of Diabetic Cardiomyopathy. PLoS ONE, 2013, 8, e60931.	2.5	121
49	The Internal Region Leucine-rich Repeat 6 of Decorin Interacts with Low Density Lipoprotein Receptor-related Protein-1, Modulates Transforming Growth Factor (TGF)-β-dependent Signaling, and Inhibits TGF-β-dependent Fibrotic Response in Skeletal Muscles. Journal of Biological Chemistry, 2012, 287. 6773-6787.	3.4	60
50	Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells. International Journal of Biochemistry and Cell Biology, 2012, 44, 1993-2002.	2.8	70
51	Angiotensin II receptor type 1 blockade decreases CTGF/CCN2â€mediated damage and fibrosis in normal and dystrophic skeletal muscles. Journal of Cellular and Molecular Medicine, 2012, 16, 752-764.	3.6	72
52	Fibrotic response induced by angiotensin-II requires NAD(P)H oxidase-induced reactive oxygen species (ROS) in skeletal muscle cells. Biochemical and Biophysical Research Communications, 2011, 410, 665-670.	2.1	65
53	Connective tissue growth factor induction by lysophosphatidic acid requires transactivation of transforming growth factor type l² receptors and the JNK pathway. Cellular Signalling, 2011, 23, 449-457.	3.6	50
54	CTGF/CCNâ€⊋ overâ€expression can directly induce features of skeletal muscle dystrophy. Journal of Pathology, 2011, 225, 490-501.	4.5	92

#	Article	IF	CITATIONS
55	Decorin Interacts with Connective Tissue Growth Factor (CTGF)/CCN2 by LRR12 Inhibiting Its Biological Activity. Journal of Biological Chemistry, 2011, 286, 24242-24252.	3.4	101
56	TGF-Î ² receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation. Experimental Cell Research, 2010, 316, 2487-2503.	2.6	45
57	Uptake of Tritiated Liquids by Individual Breakfast Cereal Flakes. Journal of Food Science, 2010, 75, E194-200.	3.1	2
58	Syndecan-4 and β1 integrin are regulated by electrical activity in skeletal muscle: Implications for cell adhesion. Matrix Biology, 2010, 29, 383-392.	3.6	10
59	A Novel Mechanism of Sequestering Fibroblast Growth Factor 2 by Glypican in Lipid Rafts, Allowing Skeletal Muscle Differentiation. Molecular and Cellular Biology, 2010, 30, 1634-1649.	2.3	100
60	Matrix Metalloproteinase-2-deficient Fibroblasts Exhibit an Alteration in the Fibrotic Response to Connective Tissue Growth Factor/CCN2 because of an Increase in the Levels of Endogenous Fibronectin. Journal of Biological Chemistry, 2009, 284, 13551-13561.	3.4	30
61	Inhibition of extracellular matrix assembly induces the expression of osteogenic markers in skeletal muscle cells by a BMP-2 independent mechanism. BMC Cell Biology, 2009, 10, 73.	3.0	10
62	Skeletal muscle cells express the profibrotic cytokine connective tissue growth factor (CTGF/CCN2), which induces their dedifferentiation. Journal of Cellular Physiology, 2008, 215, 410-421.	4.1	109
63	Heparin activates Wnt signaling for neuronal morphogenesis. Journal of Cellular Physiology, 2008, 216, 805-815.	4.1	34
64	Novel regulatory mechanisms for the proteoglycans decorin and biglycan during muscle formation and muscular dystrophy. Matrix Biology, 2008, 27, 700-708.	3.6	83
65	CTCF Inhibits BMP-7 Signaling in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2008, 19, 2098-2107.	6.1	123
66	A Novel Modulatory Mechanism of Transforming Growth Factor-Î ² Signaling through Decorin and LRP-1. Journal of Biological Chemistry, 2007, 282, 18842-18850.	3.4	112
67	Adenovirus-mediated hepatic syndecan-1 overexpression induces hepatocyte proliferation and hyperlipidaemia in mice. Liver International, 2007, 27, 569-581.	3.9	13
68	Constitutively activated dystrophic muscle fibroblasts show a paradoxical response to TGF-Î ² and CTGF/CCN2. Journal of Cell Communication and Signaling, 2007, 1, 205-217.	3.4	40
69	Sulfation is required for bone morphogenetic protein 2-dependent ld1 induction. Biochemical and Biophysical Research Communications, 2006, 344, 1207-1215.	2.1	8
70	Extracellular proteoglycans modify TGF-β bio-availability attenuating its signaling during skeletal muscle differentiation. Matrix Biology, 2006, 25, 332-341.	3.6	127
71	Increase in decorin and biglycan in Duchenne Muscular Dystrophy: role of fibroblasts as cell source of these proteoglycans in the disease. Journal of Cellular and Molecular Medicine, 2006, 10, 758-769.	3.6	89
72	Betaglycan induces TGF-β signaling in a ligand-independent manner, through activation of the p38 pathway. Cellular Signalling, 2006, 18, 1482-1491.	3.6	49

#	Article	IF	CITATIONS
73	Changes in secreted and cell associated proteoglycan synthesis during conversion of myoblasts to osteoblasts in response to bone morphogenetic protein-2: Role of decorin in cell response to BMP-2. Journal of Cellular Physiology, 2006, 206, 58-67.	4.1	44
74	The Low Density Lipoprotein Receptor-related Protein Functions as an Endocytic Receptor for Decorin. Journal of Biological Chemistry, 2006, 281, 31562-31571.	3.4	50
75	Transforming Growth Factor β (TGF-β) Signaling Is Regulated by Electrical Activity in Skeletal Muscle Cells. Journal of Biological Chemistry, 2006, 281, 18473-18481.	3.4	25
76	The Low Density Lipoprotein Receptor-related Protein Functions as an Endocytic Receptor for Decorin. Journal of Biological Chemistry, 2006, 281, 31562-31571.	3.4	11
77	Biglycan is a new extracellular component of the Chordin–BMP4 signaling pathway. EMBO Journal, 2005, 24, 1397-1405.	7.8	104
78	Caenorhabditis elegans syndecan (SDN-1) is required for normal egg laying and associates with the nervous system and the vulva. Journal of Cell Science, 2004, 117, 5179-5190.	2.0	46
79	Dermatan sulfate exerts an enhanced growth factor response on skeletal muscle satellite cell proliferation and migration. Journal of Cellular Physiology, 2004, 198, 169-178.	4.1	52
80	Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation. Journal of Cell Science, 2004, 117, 73-84.	2.0	112
81	The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP. Brain Research Reviews, 2004, 47, 174-188.	9.0	56
82	Structural and functional organization of synaptic acetylcholinesterase. Brain Research Reviews, 2004, 47, 96-104.	9.0	41
83	Transient up-regulation of biglycan during skeletal muscle regeneration: delayed fiber growth along with decorin increase in biglycan-deficient mice. Developmental Biology, 2004, 268, 358-371.	2.0	92
84	Inhibition of myoblast migration via decorin expression is critical for normal skeletal muscle differentiation. Developmental Biology, 2003, 259, 209-224.	2.0	29
85	Betaglycan Expression Is Transcriptionally Up-regulated during Skeletal Muscle Differentiation. Journal of Biological Chemistry, 2003, 278, 382-390.	3.4	43
86	ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression. American Journal of Physiology - Cell Physiology, 2002, 282, C383-C394.	4.6	144
87	Augmented synthesis and differential localization of heparan sulfate proteoglycans in Duchenne muscular dystrophy. Journal of Cellular Biochemistry, 2002, 85, 703-713.	2.6	52
88	Extracellular matrix histone H1 binds to perlecan, is present in regenerating skeletal muscle and stimulates myoblast proliferation. Journal of Cell Science, 2002, 115, 2041-2051.	2.0	50
89	Extracellular matrix histone H1 binds to perlecan, is present in regenerating skeletal muscle and stimulates myoblast proliferation. Journal of Cell Science, 2002, 115, 2041-51.	2.0	42
90	Expression and localization of proteoglycans during limb myogenic activation. Developmental Dynamics, 2001, 221, 106-115.	1.8	40

#	Article	IF	CITATIONS
91	Antisense Inhibition of Decorin Expression in Myoblasts Decreases Cell Responsiveness to Transforming Growth Factor β and Accelerates Skeletal Muscle Differentiation. Journal of Biological Chemistry, 2001, 276, 3589-3596.	3.4	93
92	Synthesis of proteoglycans is augmented in dystrophic mdx mouse skeletal muscle. European Journal of Cell Biology, 2000, 79, 173-181.	3.6	63
93	Antisense Inhibition of Syndecan-3 Expression during Skeletal Muscle Differentiation Accelerates Myogenesis through a Basic Fibroblast Growth Factor-dependent Mechanism. Journal of Biological Chemistry, 1999, 274, 37876-37884.	3.4	73
94	Interaction of skeletal muscle cells with collagen type IV is mediated by perlecan associated with the cell surface. , 1999, 75, 665-674.		19
95	Decorin Core Protein Fragment Leu155-Val260 Interacts with TGF-β but Does Not Compete for Decorin Binding to Type I Collagen. Archives of Biochemistry and Biophysics, 1998, 355, 241-248.	3.0	138
96	Syndecan-1 Expression Inhibits Myoblast Differentiation through a Basic Fibroblast Growth Factor-dependent Mechanism. Journal of Biological Chemistry, 1998, 273, 32288-32296.	3.4	62
97	Syndecan-1 Expression Is Down-regulated during Myoblast Terminal Differentiation. Journal of Biological Chemistry, 1997, 272, 18418-18424.	3.4	72
98	Expression of Perlecan, a Proteoglycan That Binds Myogenic Inhibitory Basic Fibroblast Growth Factor, Is Down Regulated during Skeletal Muscle Differentiation. Experimental Cell Research, 1997, 234, 405-412.	2.6	56
99	Interaction between Alzheimer's disease βA4 precursor protein (APP) and the extracellular matrix: Evidence for the participation of heparan sulfate proteoglycans. Journal of Cellular Biochemistry, 1997, 65, 145-158.	2.6	42
100	Extracellular matrix is required for skeletal muscle differentiation but not myogenin expression. Journal of Cellular Biochemistry, 1996, 62, 227-239.	2.6	103
101	A lipid-anchored heparan sulfate proteoglycan is present in the surface of differentiated skeletal muscle cells. Isolation and biochemical characterization. FEBS Journal, 1993, 216, 587-595.	0.2	35
102	Extracellular matrix components and amyloid in neuritic plaques of Alzheimer's disease. General Pharmacology, 1993, 24, 1063-1068.	0.7	31
103	Decorin is specifically solubilized by heparin from the extracellular matrix of rat skeletal muscles. FEBS Letters, 1993, 319, 249-252.	2.8	6
104	Isolation and partial characterization of cholesterol pronucleating hydrophobic glycoproteins associated to native biliary vesicles. FEBS Letters, 1993, 318, 45-49.	2.8	23
105	Effect of salt concentration on the synthesis of sulphated macromolecules in the brine shrimp (Artemia franciscana): Changes of sulphation rate during development. Comparative Biochemistry and Physiology A, Comparative Physiology, 1993, 105, 519-523.	0.6	1
106	Isolation and purification of human biliary vesicles with potent cholesterol-nucleation-promoting activity. Clinical Science, 1992, 82, 175-180.	4.3	23
107	Axonal sprouting induced in the sciatic nerve by the amyloid precursor protein (APP) and other antiproteases. Neuroscience Letters, 1992, 144, 130-134.	2.1	58
108	Isolation of proteoglycans synthesized by rat heart: Evidence for the presence of several distinct forms. General Pharmacology, 1992, 23, 249-255.	0.7	3

#	Article	IF	CITATIONS
109	Sulfation is required for mobility of veliger larvae ofConcholepas concholepas (Mollusca;) Tj ETQq1 1 0.784314	rgBT /Over 1.4	lock 10 Tf 50
110	A high molecular weight proteoglycan is differentially expressed during development of the molluscConcholepas concholepas (Mollusca; Gastropoda; Muricidae). The Journal of Experimental Zoology, 1992, 264, 363-371.	1.4	5
111	Isolation and characterization of rat skeletal muscle proteoglycan decorin and comparison with the human fibroblast decorin. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991, 100, 565-570.	0.2	10
112	Increase of macromolecule synthesis after hatching of Concholepas concholepas veliger larvae: Effect of sulfate in the synthesis of proteoglycans. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 96, 613-619.	0.2	0
113	Different membrane-bound forms of acetylcholinesterase are present at the cell surface of hepatocytes. FEBS Journal, 1989, 182, 203-207.	0.2	23
114	Co-solubilization of asymmetric acetylcholinesterase and dermatan sulfate proteoglycan from the extracellular matrix of rat skeletal muscles. FEBS Letters, 1987, 213, 159-163.	2.8	23
115	Isolation of the heparan sulfate proteoglycans from the extracellular matrix of rat skeletal muscle. Journal of Neurobiology, 1987, 18, 271-282.	3.6	46
116	Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparan sulfate proteoglycans Journal of Cell Biology, 1985, 101, 985-992.	5.2	156
117	[28] Isolation and characterization of coated vesicles from rat liver. Methods in Enzymology, 1983, 98, 326-336.	1.0	7
118	Golgi Complex Function in the Excretion of Renal Kallikrein. Experimental Biology and Medicine, 1982, 171, 221-231.	2.4	5
119	Orientation and role of nucleoside diphosphatase and 5'-nucleotidase in Golgi vesicles from rat liver. Biochemistry, 1982, 21, 4640-4645.	2.5	69
120	SUBCELLULAR FRACTIONATION STUDIES ON THE ORGANIZATION OF FATTY ACID OXIDATION BY LIVER PEROXISOMES. Annals of the New York Academy of Sciences, 1982, 386, 62-80.	3.8	35