
T Joseph Kappock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5659567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase. Frontiers in Chemistry, 2016, 4, 23.	3.6	3
2	You are lost without a map: Navigating the sea of protein structures. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 258-268.	2.3	24
3	An active site–tail interaction in the structure of hexahistidine-tagged <i>Thermoplasma acidophilum</i> citrate synthase. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1292-1299.	0.8	7
4	Draft Genome Sequence of Acetobacter aceti Strain 1023, a Vinegar Factory Isolate. Genome Announcements, 2014, 2, .	0.8	4
5	Metal stopping reagents facilitate discontinuous activity assays of the de novo purine biosynthesis enzyme PurE. Analytical Biochemistry, 2014, 452, 43-45.	2.4	3
6	A Biosynthetic Enzyme Worms Its Way out of a Conserved Mechanism. Structure, 2013, 21, 1719-1720.	3.3	0
7	Functional analysis of the acetic acid resistance (aar) gene cluster in Acetobacter aceti strain 1023. Acetic Acid Bacteria, 2013, 2, 3.	1.0	11
8	Function and X-Ray crystal structure of Escherichia coli YfdE. PLoS ONE, 2013, 8, e67901.	2.5	13
9	Crystal Structures of <i>Acetobacter aceti</i> Succinyl-Coenzyme A (CoA):Acetate CoA-Transferase Reveal Specificity Determinants and Illustrate the Mechanism Used by Class I CoA-Transferases. Biochemistry, 2012, 51, 8422-8434.	2.5	22
10	Formyl 0enzyme A (CoA):oxalate CoAâ€ŧransferase from the acidophile <i>Acetobacter aceti</i> has a distinctive electrostatic surface and inherent acid stability. Protein Science, 2012, 21, 686-696.	7.6	18
11	<i>Treponema denticola</i> PurE Is a Bacterial AIR Carboxylase. Biochemistry, 2011, 50, 4623-4637.	2.5	19
12	Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nature Structural and Molecular Biology, 2011, 18, 592-596.	8.2	182
13	The Partial Substrate Dethiaacetyl-Coenzyme A Mimics All Critical Carbon Acid Reactions in the Condensation Half-Reaction Catalyzed by <i>Thermoplasma acidophilum</i> Citrate Synthase. Biochemistry, 2009, 48, 7878-7891.	2.5	9
14	The Purine Machine Scores a Base Hit. ACS Chemical Biology, 2008, 3, 460-462.	3.4	2
15	A Specialized Citric Acid Cycle Requiring Succinyl-Coenzyme A (CoA):Acetate CoA-Transferase (AarC) Confers Acetic Acid Resistance on the Acidophile <i>Acetobacter aceti</i> . Journal of Bacteriology, 2008, 190, 4933-4940.	2.2	99
16	Cloning and transcriptional analysis of Crepis alpina fatty acid desaturases affecting the biosynthesis of crepenynic acid. Journal of Experimental Botany, 2007, 58, 1421-1432.	4.8	12
17	Alanine racemase from the acidophile Acetobacter aceti. Protein Expression and Purification, 2007, 51, 39-48.	1.3	25
18	N5-CAIR Mutase: Role of a CO2Binding Site and Substrate Movement in Catalysisâ€,‡. Biochemistry, 2007, 46, 2842-2855.	2.5	23

2

Т ЈОЅЕРН КАРРОСК

#	Article	IF	CITATIONS
19	Multiple Active Site Histidine Protonation States in Acetobacter aceti N5-Carboxyaminoimidazole Ribonucleotide Mutase Detected by REDOR NMR. Biochemistry, 2007, 46, 9507-9512.	2.5	4
20	Structure of a NADH-Insensitive Hexameric Citrate Synthase that Resists Acid Inactivation. Biochemistry, 2006, 45, 13487-13499.	2.5	43
21	Biochemical and Structural Studies of N5-Carboxyaminoimidazole Ribonucleotide Mutase from the Acidophilic Bacterium Acetobacter aceti. Biochemistry, 2006, 45, 8193-8208.	2.5	27
22	Atomic-resolution crystal structure of thioredoxin from the acidophilic bacterium Acetobacter aceti. Protein Science, 2006, 16, 92-98.	7.6	11
23	Acidophilic adaptations in the structure ofAcetobacter aceti N5-carboxyaminoimidazole ribonucleotide mutase (PurE). Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1753-1760.	2.5	24
24	Altered Pathway Routing in a Class of Salmonella enterica Serovar Typhimurium Mutants Defective in Aminoimidazole Ribonucleotide Synthetase. Journal of Bacteriology, 2001, 183, 2234-2240.	2.2	1
25	Modular evolution of the purine biosynthetic pathway. Current Opinion in Chemical Biology, 2000, 4, 567-572.	6.1	93
26	Lipases Provide a New Mechanistic Model for Polyhydroxybutyrate (PHB) Synthases:  Characterization of the Functional Residues in Chromatium vinosum PHB Synthase. Biochemistry, 2000, 39, 3927-3936.	2.5	106
27	Crystal structure of Escherichia coli PurE, an unusual mutase in the purine biosynthetic pathway. Structure, 1999, 7, 1395-1406.	3.3	50
28	X-ray crystal structure of aminoimidazole ribonucleotide synthetase (PurM), from the Escherichia coli purine biosynthetic pathway at 2.5 Ã resolution. Structure, 1999, 7, 1155-1166.	3.3	68
29	Evidence for the Direct Transfer of the Carboxylate of N5-Carboxyaminoimidazole Ribonucleotide (N5-CAIR) To Generate 4-Carboxy-5-aminoimidazole Ribonucleotide Catalyzed by Escherichia coli PurE, an N5-CAIR Mutase. Biochemistry, 1999, 38, 3012-3018.	2.5	43
30	Three-Dimensional Structure ofN5-Carboxyaminoimidazole Ribonucleotide Synthetase:Â A Member of the ATP Grasp Protein Superfamilyâ€,‡. Biochemistry, 1999, 38, 15480-15492.	2.5	52
31	X-ray Crystal Structure of Glycinamide Ribonucleotide Synthetase fromEscherichia coliâ€,‡. Biochemistry, 1998, 37, 15647-15662.	2.5	57
32	Spectroscopic Characterization of the Catalytically Competent Ferrous Site of the Resting, Activated, and Substrate-Bound Forms of Phenylalanine Hydroxylase. Journal of the American Chemical Society, 1997, 119, 1901-1915.	13.7	65
33	Pterin-Dependent Amino Acid Hydroxylases. Chemical Reviews, 1996, 96, 2659-2756.	47.7	310
34	Spectroscopic and Kinetic Properties of Unphosphorylated Rat Hepatic Phenylalanine Hydroxylase Expressed in Escherichia coli. Journal of Biological Chemistry, 1995, 270, 30532-30544.	3.4	43
35	[6] Solubilization, cellular uptake, and activity of β-carotene and other carotenoids as inhibitors of neoplastic transformation in cultured cells. Methods in Enzymology, 1993, 214, 55-68.	1.0	46
36	Diverse carotenoids protect against chemically induced neoplastic transformation. Carcinogenesis, 1991, 12, 671-678.	2.8	252