
Margaret Fahnestock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5657355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retrograde Axonal Transport of Neurotrophins in Basal Forebrain Cholinergic Neurons. Methods in Molecular Biology, 2022, 2431, 249-270.	0.9	4
2	Nurr1 Is Not an Essential Regulator of BDNF in Mouse Cortical Neurons. International Journal of Molecular Sciences, 2022, 23, 6853.	4.1	5
3	Cholinergic neurodegeneration in Alzheimer disease mouse models. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 182, 191-209.	1.8	12
4	Aberrant AZIN2 and polyamine metabolism precipitates tau neuropathology. Journal of Clinical Investigation, 2021, 131, .	8.2	20
5	Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand?. Neuroscience, 2021, 457, 259-282.	2.3	25
6	Effect of <scp>nonâ€invasive</scp> brain stimulation on behavior and serum brainâ€derived neurotrophic factor and insulinâ€like growth factorâ€1 levels in autistic patients. Drug Development Research, 2021, 82, 716-723.	2.9	5
7	Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer's Disease. Cells, 2021, 10, 1983.	4.1	13
8	Differential effects of chronic immunosuppression on behavioral, epigenetic, and Alzheimer's disease-associated markers in 3xTg-AD mice. Alzheimer's Research and Therapy, 2021, 13, 30.	6.2	7
9	Leveraging amino acid sensors as therapeutic targets for tauopathies and related dementias. Alzheimer's and Dementia, 2020, 16, e043859.	0.8	0
10	A Single Bout of High-intensity Interval Exercise Increases Corticospinal Excitability, Brain-derived Neurotrophic Factor, and Uncarboxylated Osteolcalcin in Sedentary, Healthy Males. Neuroscience, 2020, 437, 242-255.	2.3	34
11	Insulinâ€Like Growth Factor and Insulinâ€Like Growth Factor Receptor Expression in Human Idiopathic Autism Fusiform Gyrus Tissue. Autism Research, 2020, 13, 897-907.	3.8	10
12	The retrograde transport of BDNF and proNGF diminishes with age in basal forebrain cholinergic neurons. IBRO Reports, 2019, 6, S499-S500.	0.3	0
13	Retrograde axonal transport of BDNF and proNGF diminishes with age in basal forebrain cholinergic neurons. Neurobiology of Aging, 2019, 84, 131-140.	3.1	15
14	No changes in corticospinal excitability, biochemical markers, and working memory after six weeks of highâ€intensity interval training in sedentary males. Physiological Reports, 2019, 7, e14140.	1.7	30
15	The Effects of Biological Sex and Ovarian Hormones on Exercise-Induced Neuroplasticity. Neuroscience, 2019, 410, 29-40.	2.3	24
16	ProNGF and Neurodegeneration in Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 129.	2.8	84
17	P4â€499: THE RETROGRADE TRANSPORT OF BDNF AND PRONGF DIMINISHES WITH AGE IN BASAL FOREBRAIN CHOLINERGIC NEURONS. Alzheimer's and Dementia, 2019, 15, P1504.	0.8	0
18	Effects of aerobic training, resistance training, or both on brain-derived neurotrophic factor in adolescents with obesity: The hearty randomized controlled trial. Physiology and Behavior, 2018, 191, 138-145.	2.1	26

#	Article	IF	CITATIONS
19	Neuroimmunologic and Neurotrophic Interactions in Autism Spectrum Disorders: Relationship to Neuroinflammation. NeuroMolecular Medicine, 2018, 20, 161-173.	3.4	47
20	The valproic acid-induced rodent model of autism. Experimental Neurology, 2018, 299, 217-227.	4.1	350
21	Clustering the autisms using glutamate synapse protein interaction networks from cortical and hippocampal tissue of seven mouse models. Molecular Autism, 2018, 9, 48.	4.9	23
22	Early Intervention with a Multi-Ingredient Dietary Supplement Improves Mood and Spatial Memory in a Triple Transgenic Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, 835-857.	2.6	10
23	The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity, 2018, 48, 979-991.e8.	14.3	436
24	Sex-Dependent Differences in Spontaneous Autoimmunity in Adult 3xTg-AD Mice. Journal of Alzheimer's Disease, 2018, 63, 1191-1205.	2.6	18
25	Cholinergic Surveillance over Hippocampal RNA Metabolism and Alzheimer's-Like Pathology. Cerebral Cortex, 2017, 27, bhw177.	2.9	42
26	[P1–209]: NGF AND BDNF DYSMETABOLISM IN A TRANSGENIC RAT MODEL OF ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P322.	0.8	0
27	The serine protease inhibitor neuroserpin is required for normal synaptic plasticity and regulates learning and social behavior. Learning and Memory, 2017, 24, 650-659.	1.3	24
28	The Effects of Physical Exercise and Cognitive Training on Memory and Neurotrophic Factors. Journal of Cognitive Neuroscience, 2017, 29, 1895-1907.	2.3	90
29	[O1–14–05]: SEXâ€SPECIFIC CHANGES IN SYSTEMIC IMMUNE STATUS AND CENTRAL PATHOLOGY IN 3XTG MICE. Alzheimer's and Dementia, 2017, 13, P230.	â€AD 0.8	0
30	ProNGF, but Not NGF, Switches from Neurotrophic to Apoptotic Activity in Response to Reductions in TrkA Receptor Levels. International Journal of Molecular Sciences, 2017, 18, 599.	4.1	67
31	Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer's disease. Neurobiology of Disease, 2017, 108, 307-323.	4.4	66
32	P4â€086: TAU Modulates BDNF Expression and Mediates Aβâ€Induced Bdnf Downâ€Regulation in Animal and Cellular Models of Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P1045.	0.8	2
33	Electrical muscle stimulation elevates intramuscular BDNF and GDNF mRNA following peripheral nerve injury and repair in rats. Neuroscience, 2016, 334, 93-104.	2.3	62
34	Tau downregulates BDNF expression in animal and cellular models of Alzheimer's disease. Neurobiology of Aging, 2016, 48, 135-142.	3.1	63
35	Cerebrospinal Fluid proNGF: A Putative Biomarker for Early Alzheimer's Disease. Current Alzheimer Research, 2016, 13, 800-808.	1.4	35
36	ISDN2014_0114: Decreased mTOR signaling via p70S6K/eIF4B is associated with loss of the excitatory postsynaptic marker PSDâ€95 in autism. International Journal of Developmental Neuroscience, 2015, 47, 32-32.	1.6	1

Margaret Fahnestock

#	Article	IF	CITATIONS
37	Calcitonin geneâ€related peptide regulation of glial cellâ€line derived neurotrophic factor in differentiated rat myotubes. Journal of Neuroscience Research, 2015, 93, 514-520.	2.9	10
38	Bridging the Gap between Genes and Behavior: Brain-Derived Neurotrophic Factor and the mTOR Pathway in Idiopathic Autism. Autism-open Access, 2015, 05, .	0.2	8
39	CREB expression mediates amyloid β-induced basal BDNF downregulation. Neurobiology of Aging, 2015, 36, 2406-2413.	3.1	102
40	Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta Neuropathologica Communications, 2015, 3, 3.	5.2	69
41	Brain-derived neurotrophic factor and TrkB expression in the "oldest-old,―the 90+ Study: correlation with cognitive status andÂlevels of soluble amyloid-beta. Neurobiology of Aging, 2015, 36, 3130-3139.	3.1	44
42	Synergistic effects of diet and exercise on hippocampal function in chronically stressed mice. Neuroscience, 2015, 308, 180-193.	2.3	29
43	Increased pro–nerve growth factor and decreased brain-derived neurotrophic factor in non–Alzheimer's disease tauopathies. Neurobiology of Aging, 2014, 35, 926-933.	3.1	40
44	Attenuation of mania-like behavior in Na+,K+-ATPase α3 mutant mice by prospective therapies for bipolar disorder: Melatonin and exercise. Neuroscience, 2014, 260, 195-204.	2.3	27
45	Sensory Nerve Cross-Anastomosis and Electrical Muscle Stimulation Synergistically Enhance Functional Recovery of Chronically Denervated Muscle. Plastic and Reconstructive Surgery, 2014, 134, 736e-745e.	1.4	20
46	Amyloid-Beta, BDNF, and the Mechanism of Neurodegeneration in Alzheimer's Disease. , 2014, , 1597-1620.		2
47	Abnormalities in BDNF/TrkB/PI3K signaling pathways in autism (728.3). FASEB Journal, 2014, 28, 728.3.	0.5	1
48	Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease. Journal of Neuroscience Research, 2013, 91, 167-177.	2.9	54
49	Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO Journal, 2013, 32, 1730-1744.	7.8	54
50	Overexpression of nerve growth factor by murine smooth muscle cells: Role of the p75 neurotrophin receptor on sympathetic and sensory sprouting. Journal of Comparative Neurology, 2013, 521, 2621-2643.	1.6	9
51	Electrical muscle stimulation after immediate nerve repair reduces muscle atrophy without affecting reinnervation. Muscle and Nerve, 2013, 48, 219-225.	2.2	33
52	A novel anticonvulsant modulates voltageâ€gated sodium channel inactivation and prevents kindlingâ€induced seizures. Journal of Neurochemistry, 2013, 126, 651-661.	3.9	10
53	The Prion Protein Ligand, Stress-Inducible Phosphoprotein 1, Regulates Amyloid-β Oligomer Toxicity. Journal of Neuroscience, 2013, 33, 16552-16564.	3.6	70
54	Cholinergic basal forebrain circuit degeneration in Alzheimer's disease. FASEB Journal, 2013, 27, 316.5.	0.5	1

#	Article	IF	CITATIONS
55	Reduced Tissue Levels of Noradrenaline Are Associated with Behavioral Phenotypes of the TgCRND8 Mouse Model of Alzheimer's Disease. Neuropsychopharmacology, 2012, 37, 1934-1944.	5.4	62
56	Altered Balance of Proteolytic Isoforms of Pro-Brain-Derived Neurotrophic Factor in Autism. Journal of Neuropathology and Experimental Neurology, 2012, 71, 289-297.	1.7	79
57	BDNF increases with behavioral enrichment and an antioxidant diet in the aged dog. Neurobiology of Aging, 2012, 33, 546-554.	3.1	87
58	Object recognition memory and BDNF expression are reduced in young TgCRND8 mice. Neurobiology of Aging, 2012, 33, 555-563.	3.1	92
59	The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterology and Motility, 2011, 23, 1132-1139.	3.0	805
60	Cholinotrophic basal forebrain system alterations in 3xTg-AD transgenic mice. Neurobiology of Disease, 2011, 41, 338-352.	4.4	77
61	Brain-derived neurotrophic factor: the link between amyloid-β and memory loss. Future Neurology, 2011, 6, 627-639.	O.5	48
62	Nerve growth factor promoter activity revealed in mice expressing enhanced green fluorescent protein. Journal of Comparative Neurology, 2011, 519, 2522-2545.	1.6	26
63	Determining the effects of electrical stimulation on functional recovery of denervated rat gastrocnemius muscle using motor unit number estimation. , 2011, 2011, 1977-80.		10
64	A New System and Paradigm for Chronic Stimulation of Denervated Rat Muscle. Journal of Medical and Biological Engineering, 2011, 31, 87.	1.8	16
65	Biological Activity of Nerve Growth Factor Precursor Is Dependent upon Relative Levels of Its Receptors. Journal of Biological Chemistry, 2009, 284, 18424-18433.	3.4	115
66	Decreased Brain-Derived Neurotrophic Factor Depends on Amyloid Aggregation State in Transgenic Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2009, 29, 9321-9329.	3.6	185
67	Sensory Protection of Rat Muscle Spindles following Peripheral Nerve Injury and Reinnervation. Plastic and Reconstructive Surgery, 2009, 124, 1860-1868.	1.4	32
68	Erratum. Journal of Neurosurgery, 2009, 110, 197.	1.6	0
69	Proteasome Inhibition by Fellutamide B Induces Nerve Growth Factor Synthesis. Chemistry and Biology, 2008, 15, 501-512.	6.0	95
70	Longâ€ŧerm changes in neurotrophic factor expression in distal nerve stump following denervation and reinnervation with motor or sensory nerve. Journal of Neurochemistry, 2008, 105, 1244-1252.	3.9	63
71	Clinical application of sensory protection of denervated muscle. Journal of Neurosurgery, 2008, 109, 955-961.	1.6	34
72	Decreased ProBDNF: The Cause of Alzheimer's-Associated Neurodegeneration and Cognitive Decline?. ,		0

2008, , 279-283.

#	Article	IF	CITATIONS
73	Shift in the Balance of TRKA and ProNGF in Prodromal Alzheimer 's Disease. , 2008, , 285-290.		0
74	Oligomeric Amyloid Decreases Basal Levels of Brain-Derived Neurotrophic factor (BDNF) mRNA via Specific Downregulation of BDNF Transcripts IV and V in Differentiated Human Neuroblastoma Cells. Journal of Neuroscience, 2007, 27, 2628-2635.	3.6	162
75	Cholinotrophic Molecular Substrates of Mild Cognitive Impairment in the Elderly. Current Alzheimer Research, 2007, 4, 340-350.	1.4	91
76	Neurotrophic activity of proNGF in vivo. Experimental Neurology, 2007, 204, 832-835.	4.1	24
77	NT-3 modulates BDNF and proBDNF levels in naÃ ⁻ ve and kindled rat hippocampus. Neurochemistry International, 2007, 50, 866-871.	3.8	17
78	Differential gene expression profiling of short and long term denervated muscle. FASEB Journal, 2006, 20, 115-117.	0.5	105
79	Kindling, Neurotrophins and Axon-Guidance Factors. , 2005, , 229-240.		0
80	Precursor form of brainâ€derived neurotrophic factor and mature brainâ€derived neurotrophic factor are decreased in the preâ€clinical stages of Alzheimer's disease. Journal of Neurochemistry, 2005, 93, 1412-1421.	3.9	614
81	Time-dependent Effect of Kainate-induced Seizures on Glutamate Receptor GluR5, GluR6, and GluR7 mRNA and Protein Expression in Rat Hippocampus. Epilepsia, 2005, 46, 616-623.	5.1	25
82	Contribution of the Distal Nerve Sheath to Nerve and Muscle Preservation Following Denervation and Sensory Protection. Journal of Reconstructive Microsurgery, 2005, 21, 57-70.	1.8	31
83	Differential actions of nerve growth factor receptors TrkA and p75NTR in a rat model of epileptogenesis. Molecular and Cellular Neurosciences, 2005, 29, 162-172.	2.2	14
84	Strain differences affect the induction of status epilepticus and seizure-induced morphological changes. European Journal of Neuroscience, 2004, 20, 403-418.	2.6	56
85	The nerve growth factor precursor proNGF exhibits neurotrophic activity but is less active than mature nerve growth factor. Journal of Neurochemistry, 2004, 89, 581-592.	3.9	159
86	A new brain-derived neurotrophic factor transcript and decrease inbrain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer's disease parietal cortex. Journal of Neurochemistry, 2004, 82, 1058-1064.	3.9	122
87	ProNGF: a neurotrophic or an apoptotic molecule?. Progress in Brain Research, 2004, 146, 101-110.	1.4	105
88	Kindling and status epilepticus models of epilepsy: rewiring the brain. Progress in Neurobiology, 2004, 73, 1-60.	5.7	727
89	The effects of brain-derived neurotrophic factor (BDNF) administration on kindling induction, Trk expression and seizure-related morphological changes. Neuroscience, 2004, 126, 521-531.	2.3	85
90	NGF, BDNF, NT-3, and GDNF mRNA Expression in Rat Skeletal Muscle following Denervation and Sensory Protection. Journal of Neurotrauma, 2004, 21, 1468-1478.	3.4	67

Margaret Fahnestock

#	Article	IF	CITATIONS
91	Increased proNGF Levels in Subjects with Mild Cognitive Impairment and Mild Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2004, 63, 641-649.	1.7	212
92	EphA/ephrin-A interactions regulate epileptogenesis and activity-dependent axonal sprouting in adult rats. Molecular and Cellular Neurosciences, 2003, 24, 984-999.	2.2	35
93	Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer's disease. Molecular Brain Research, 2003, 111, 148-154.	2.3	230
94	A ligand of the p65/p95 receptor suppresses perforant path kindling, kindling-induced mossy fiber sprouting, and hilar area changes in adult rats. Neuroscience, 2003, 119, 1147-1156.	2.3	15
95	Glial Cell Line-Derived Neurotrophic Factor Modulates Kindling and Activation-Induced Sprouting in Hippocampus of Adult Rats. Experimental Neurology, 2002, 178, 49-58.	4.1	24
96	Differential expression of nerve growth factor transcripts in glia and neurons and their regulation by transforming growth factor-l²1. Molecular Brain Research, 2002, 105, 115-125.	2.3	16
97	Continuous infusion of neurotrophin-3 triggers sprouting, decreases the levels of TrkA and TrkC, and inhibits epileptogenesis and activity-dependent axonal growth in adult rats. Neuroscience, 2002, 115, 1295-1308.	2.3	66
98	Activity-dependent changes in synaptophysin immunoreactivity in hippocampus, piriform cortex, and entorhinal cortex of the rat. Neuroscience, 2002, 115, 1221-1229.	2.3	70
99	Deterioration of storage phosphor screens with use. Journal of Labelled Compounds and Radiopharmaceuticals, 2002, 45, 339-345.	1.0	2
100	The cholinergic system modulates kindling and kindling-induced mossy fiber sprouting. Synapse, 2002, 44, 132-138.	1.2	24
101	Neural Growth, Neural Damage and Neurotrophins in the Kindling Model of Epilepsy. Advances in Experimental Medicine and Biology, 2002, 497, 149-170.	1.6	13
102	Neurotrophic factors and Alzheimer's disease: are we focusing on the wrong molecule?. Journal of Neural Transmission Supplementum, 2002, , 241-252.	0.5	108
103	The Precursor Pro-Nerve Growth Factor Is the Predominant Form of Nerve Growth Factor in Brain and Is Increased in Alzheimer's Disease. Molecular and Cellular Neurosciences, 2001, 18, 210-220.	2.2	467
104	Improved functional recovery of denervated skeletal muscle after temporary sensory nerve innervation. Neuroscience, 2001, 103, 503-510.	2.3	93
105	Expression of the kallikrein gene family in normal and Alzheimer's disease brain. NeuroReport, 2001, 12, 2747-2751.	1.2	56
106	Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression Behavioral Neuroscience, 2001, 115, 1145-1153.	1.2	200
107	Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression Behavioral Neuroscience, 2001, 115, 1145-1153.	1.2	88
108	Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer's disease. Molecular Brain Research, 2000, 76, 347-354.	2.3	302

#	Article	IF	CITATIONS
109	Expression of Human Prohormone Convertase PC2 in a Baculovirus-Insect Cell System. DNA and Cell Biology, 1999, 18, 409-417.	1.9	8
110	Brain-derived neurotrophic factor infusion delays amygdala and perforant path kindling without affecting paired-pulse measures of neuronal inhibition in adult rats. Neuroscience, 1999, 92, 1367-1375.	2.3	56
111	Time course for kindling-induced changes in the hilar area of the dentate gyrus: reactive gliosis as a potential mechanism. Brain Research, 1998, 804, 331-336.	2.2	39
112	An AP-1 Site in the Nerve Growth Factor Promoter Is Essential for 1,25-Dihydroxyvitamin D3-Mediated Nerve Growth Factor Expression in Osteoblastsâ€. Biochemistry, 1998, 37, 5988-5994.	2.5	46
113	Neuronal Growth and Neuronal Loss in Kindling Epileptogenesis. Advances in Behavioral Biology, 1998, , 193-209.	0.2	3
114	Nerve Growth Factor Accelerates Seizure Development, Enhances Mossy Fiber Sprouting, and Attenuates Seizure-Induced Decreases in Neuronal Density in the Kindling Model of Epilepsy. Journal of Neuroscience, 1997, 17, 5288-5296.	3.6	111
115	Long-term potentiation trains induce mossy fiber sprouting. Brain Research, 1997, 775, 193-197.	2.2	68
116	Stimulatory G-protein α-subunit mRNA levels are not increased in autopsied cerebral cortex from patients with bipolar disorder. Molecular Brain Research, 1996, 42, 45-50.	2.3	25
117	Nerve growth factor mRNA and protein levels measured in the same tissue from normal and Alzheimer's disease parietal cortex. Molecular Brain Research, 1996, 42, 175-178.	2.3	95
118	Method for Quantitation of Low-Abundance Nerve Growth Factor mRNA Expression in Human Nervous Tissue Using Competitive Reverse Transcription Polymerase Chain Reaction. DNA and Cell Biology, 1996, 15, 415-422.	1.9	12
119	A nerve growth factor peptide retards seizure development and inhibits neuronal sprouting in a rat model of epilepsy Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9495-9499.	7.1	73
120	Intraventricular administration of antibodies to nerve growth factor retards kindling and blocks mossy fiber sprouting in adult rats. Journal of Neuroscience, 1995, 15, 5316-5323.	3.6	171
121	Characterization of Kallikrein cDNAs from the African RodentMastomys. DNA and Cell Biology, 1994, 13, 293-300.	1.9	5
122	NGF mRNA is not decreased in frontal cortex from Alzheimer's Disease patients. Molecular Brain Research, 1994, 25, 242-250.	2.3	66
123	Mouse NGF promoter upstream sequences do not affect gene expression in mouse fibroblasts. Molecular Brain Research, 1994, 27, 58-62.	2.3	17
124	Airway inflammation induced by xanthine/xanthine oxidase in guinea pigs. Agents and Actions, 1993, 38, 19-26.	0.7	25
125	Nerve growth factor synthesis by mouse submandibular gland cells in culture. Brain Research, 1993, 621, 339-342.	2.2	5
126	Nerve growth factor synthesis by mouse submandibular gland cells in culture. Brain Research, 1993, 628, 356.	2.2	0

#	Article	IF	CITATIONS
127	A Common Nomenclature for Members of the Tissue (Glandular) Kallikrein Gene Families. , 1992, 38 (Pt) Tj ETQq1	1 0.7843	14 rgBT /⊖\ 35
128	.betaNGF-endopeptidase: structure and activity of a kallikrein encoded by the gene mGK-22. Biochemistry, 1991, 30, 3443-3450.	2.5	25
129	Structure and Biosynthesis of Nerve Growth Factor. Current Topics in Microbiology and Immunology, 1991, 165, 1-26.	1.1	41
130	Detection and assay of nerve growth factor mRNA. Methods in Enzymology, 1991, 198, 48-61.	1.0	3
131	Effects of ultrasound exposure in vitro on neuroblastoma cell membranes. Ultrasound in Medicine and Biology, 1989, 15, 133-144.	1.5	24
132	The high molecular weight nerve growth factor complex from Mastomys natalensis differs from the murine nerve growth factor complex. Biochemistry, 1988, 27, 6686-6692.	2.5	8
133	The NGF and kallikrein genes of mouse, the African rat Mastomys natalensis and man: their distribution and mode of expression in the salivary gland. Molecular Brain Research, 1988, 3, 165-172.	2.3	11
134	Molecular cloning of a cDNA encoding the nerve growth factor precursor from Mastomys natalensis. Gene, 1988, 69, 257-264.	2.2	15
135	lodination of the progesterone receptor from hen oviduct spares the DNA-binding domain. Molecular and Cellular Biochemistry, 1987, 77, 179-85.	3.1	0
136	The sequence of a cDNA done coding for a novel kallikrein from mouse submaxillary gland. Nucleic Acids Research, 1986, 14, 4823-4835.	14.5	11
137	Purification of chick oviduct progesterone receptor apoprotein. The Journal of Steroid Biochemistry, 1981, 15, 63-68.	1.1	7
138	Preliminary X-ray data for the galactose binding protein from Salmonella typhimurium. Journal of Molecular Biology, 1981, 147, 471-474.	4.2	6
139	Control of the receptor for galactose taxis in Salmonella typhimurium. Journal of Bacteriology, 1979, 137, 758-763.	2.2	14