List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5656390/publications.pdf Version: 2024-02-01

ΙΙΔΝ-ΧΙΝ ΤΔΝΟ

#	Article	IF	CITATIONS
1	Singleâ€Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency. Advanced Materials, 2015, 27, 1035-1041.	21.0	1,004
2	Recent advances in organic light-emitting diodes: toward smart lighting and displays. Materials Chemistry Frontiers, 2020, 4, 788-820.	5.9	290
3	Recent advances in flexible organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 9116-9142.	5.5	254
4	Recent Progress in Organic Photodetectors and their Applications. Advanced Science, 2021, 8, 2002418.	11.2	249
5	Surface Ligand Engineering for Near-Unity Quantum Yield Inorganic Halide Perovskite QDs and High-Performance QLEDs. Chemistry of Materials, 2018, 30, 6099-6107.	6.7	217
6	Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. Journal of Materials Chemistry A, 2017, 5, 5701-5708.	10.3	207
7	Tunable nâ€Type Conductivity and Transport Properties of Gaâ€doped ZnO Nanowire Arrays. Advanced Materials, 2008, 20, 168-173.	21.0	203
8	Highâ€Efficiency Perovskite Lightâ€Emitting Diodes with Synergetic Outcoupling Enhancement. Advanced Materials, 2019, 31, e1901517.	21.0	188
9	Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Cells with >12% Efficiency. Advanced Materials, 2018, 30, e1706363.	21.0	172
10	Thermally Activated Delayed Fluorescence Carbonyl Derivatives for Organic Light-Emitting Diodes with Extremely Narrow Full Width at Half-Maximum. ACS Applied Materials & Interfaces, 2019, 11, 13472-13480.	8.0	165
11	High-Performance Flexible Organic Light-Emitting Diodes Using Embedded Silver Network Transparent Electrodes. ACS Nano, 2014, 8, 12796-12805.	14.6	154
12	Extremely Efficient White Organic Lightâ€Emitting Diodes for General Lighting. Advanced Functional Materials, 2014, 24, 7249-7256.	14.9	140
13	Accelerating hole extraction by inserting 2D Ti ₃ C ₂ -MXene interlayer to all inorganic perovskite solar cells with long-term stability. Journal of Materials Chemistry A, 2019, 7, 20597-20603.	10.3	130
14	Energy Level Offsets at Lead Halide Perovskite/Organic Hybrid Interfaces and Their Impacts on Charge Separation. Advanced Materials Interfaces, 2015, 2, 1400528.	3.7	122
15	Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures. Scientific Reports, 2014, 4, 4040.	3.3	119
16	Efficient CsPbBr ₃ Perovskite Lightâ€Emitting Diodes Enabled by Synergetic Morphology Control. Advanced Optical Materials, 2019, 7, 1801534.	7.3	117
17	Novel Starburst Molecule as a Hole Injecting and Transporting Material for Organic Light-Emitting Devices. Chemistry of Materials, 2005, 17, 615-619.	6.7	116
18	Electricâ€Fieldâ€Assisted Charge Generation and Separation Process in Transition Metal Oxideâ€Based Interconnectors for Tandem Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2012, 22, 600-608.	14.9	115

#	Article	IF	CITATIONS
19	Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse Photoemission Studies. ACS Applied Materials & Interfaces, 2016, 8, 11526-11531.	8.0	111
20	Enhanced Light Harvesting in Organic Solar Cells Featuring a Biomimetic Active Layer and a Selfâ€Cleaning Antireflective Coating. Advanced Energy Materials, 2014, 4, 1301777.	19.5	104
21	Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal–Dielectric Composite Electrodes. ACS Nano, 2016, 10, 1625-1632.	14.6	101
22	Rational Interface Engineering for Efficient Flexible Perovskite Light-Emitting Diodes. ACS Nano, 2020, 14, 6107-6116.	14.6	100
23	Terthieno[3,2â€ <i>b</i>]Thiophene (6T) Based Low Bandgap Fusedâ€Ring Electron Acceptor for Highly Efficient Solar Cells with a High Shortâ€Circuit Current Density and Low Openâ€Circuit Voltage Loss. Advanced Energy Materials, 2018, 8, 1702831.	19.5	93
24	Interfacial Potassiumâ€Guided Grain Growth for Efficient Deepâ€Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2006736.	14.9	93
25	Synergetic Transparent Electrode Architecture for Efficient Non-Fullerene Flexible Organic Solar Cells with >12% Efficiency. ACS Nano, 2019, 13, 4686-4694.	14.6	86
26	Enhanced Light Harvesting in Perovskite Solar Cells by a Bioinspired Nanostructured Back Electrode. Advanced Energy Materials, 2017, 7, 1700492.	19.5	79
27	Outcoupling-Enhanced Flexible Organic Light-Emitting Diodes on Ameliorated Plastic Substrate with Built-in Indium–Tin-Oxide-Free Transparent Electrode. ACS Nano, 2015, 9, 7553-7562.	14.6	78
28	Toward Scalable Flexible Nanomanufacturing for Photonic Structures and Devices. Advanced Materials, 2016, 28, 10353-10380.	21.0	76
29	Polymer Solar Cells with 90% External Quantum Efficiency Featuring an Ideal Light―and Chargeâ€Manipulation Layer. Advanced Materials, 2018, 30, e1706083.	21.0	76
30	Rational Molecular Design of Dibenzo[<i>a</i> , <i>c</i>]phenazine-Based Thermally Activated Delayed Fluorescence Emitters for Orange-Red OLEDs with EQE up to 22.0%. ACS Applied Materials & Interfaces, 2019, 11, 26144-26151.	8.0	73
31	Comprehensive understanding of heat-induced degradation of triple-cation mixed halide perovskite for a robust solar cell. Nano Energy, 2018, 54, 218-226.	16.0	72
32	Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2103870.	14.9	72
33	Extremely Low-Cost and Green Cellulose Passivating Perovskites for Stable and High-Performance Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 13491-13498.	8.0	71
34	In Situ Observation of Light Illumination-Induced Degradation in Organometal Mixed-Halide Perovskite Films. ACS Applied Materials & Interfaces, 2018, 10, 6737-6746.	8.0	69
35	<i>tert</i> -Butyl substituted hetero-donor TADF compounds for efficient solution-processed non-doped blue OLEDs. Journal of Materials Chemistry C, 2020, 8, 5769-5776.	5.5	68
36	Oxygen- and Water-Induced Energetics Degradation in Organometal Halide Perovskites. ACS Applied Materials & Interfaces, 2018, 10, 16225-16230.	8.0	66

JIAN-XIN TANG

#	Article	IF	CITATIONS
37	Interfacial Energy Level Tuning for Efficient and Thermostable CsPbI ₂ Br Perovskite Solar Cells. Advanced Science, 2020, 7, 1901952.	11.2	64
38	Light Manipulation in Organic Photovoltaics. Advanced Science, 2016, 3, 1600123.	11.2	61
39	Highâ€Performance Nondoped Blue Delayed Fluorescence Organic Lightâ€Emitting Diodes Featuring Low Driving Voltage and High Brightness. Advanced Science, 2020, 7, 1902508.	11.2	60
40	Unraveling Photostability of Mixed Cation Perovskite Films in Extreme Environment. Advanced Optical Materials, 2018, 6, 1800262.	7.3	58
41	Extremely Efficient Transparent Flexible Organic Lightâ€Emitting Diodes with Nanostructured Composite Electrodes. Advanced Optical Materials, 2018, 6, 1800831.	7.3	55
42	Interface studies of intermediate connectors and their roles in tandem OLEDs. Journal of Materials Chemistry, 2010, 20, 2539-2548.	6.7	54
43	Plasmonic-enhanced polymer solar cells incorporating solution-processable Au nanoparticle-adhered graphene oxide. Journal of Materials Chemistry, 2012, 22, 15614.	6.7	52
44	Recent Advances in Energetics of Metal Halide Perovskite Interfaces. Advanced Materials Interfaces, 2017, 4, 1600694.	3.7	51
45	Effects of the relative position and number of donors and acceptors on the properties of TADF materials. Journal of Materials Chemistry C, 2020, 8, 9476-9494.	5.5	50
46	Light extraction enhancement in organic light-emitting diodes based on localized surface plasmon and light scattering double-effect. Journal of Materials Chemistry C, 2013, 1, 4319.	5.5	49
47	Highly bright and low turn-on voltage CsPbBr3 quantum dot LEDs via conjugation molecular ligand exchange. Nano Research, 2019, 12, 109-114.	10.4	48
48	Using fluorene to lock electronically active moieties in thermally activated delayed fluorescence emitters for high-performance non-doped organic light-emitting diodes with suppressed roll-off. Chemical Science, 2021, 12, 1495-1502.	7.4	48
49	Efficiently Releasing the Trapped Energy Flow in White Organic Lightâ€Emitting Diodes with Multifunctional Nanofunnel Arrays. Advanced Functional Materials, 2015, 25, 2660-2668.	14.9	47
50	Biomimetic Electrodes for Flexible Organic Solar Cells with Efficiencies over 16%. Advanced Optical Materials, 2020, 8, 2000669.	7.3	47
51	Efficient Circularly Polarized Electroluminescence from Chiral Thermally Activated Delayed Fluorescence Emitters Featuring Symmetrical and Rigid Coplanar Acceptors. Advanced Optical Materials, 2021, 9, 2100017.	7.3	46
52	Highly Efficient Sky-Blue Perovskite Light-Emitting Diode Via Suppressing Nonradiative Energy Loss. Chemistry of Materials, 2021, 33, 4154-4162.	6.7	46
53	Efficient Color-Stable Inverted White Organic Light-Emitting Diodes with Outcoupling-Enhanced ZnO Layer. ACS Applied Materials & Interfaces, 2017, 9, 2767-2775.	8.0	44
54	Unraveling the light-induced degradation mechanism of CH3NH3PbI3 perovskite films. Organic Electronics, 2019, 67, 19-25.	2.6	44

JIAN-XIN TANG

#	Article	IF	CITATIONS
55	Efficient inverted polymer solar cells incorporating doped organic electron transporting layer. Organic Electronics, 2012, 13, 697-704.	2.6	43
56	Broadband Light Outâ€Coupling Enhancement of Flexible Organic Lightâ€Emitting Diodes Using Biomimetic Quasirandom Nanostructures. Advanced Optical Materials, 2015, 3, 203-210.	7.3	43
57	Pyridine-Based Electron-Transport Materials with High Solubility, Excellent Film-Forming Ability, and Wettability for Inkjet-Printed OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 38716-38727.	8.0	43
58	Recent progress of light manipulation strategies in organic and perovskite solar cells. Nanoscale, 2019, 11, 18517-18536.	5.6	41
59	Inkjet-Printed Quantum Dot Light-Emitting Diodes with an Air-Stable Hole Transport Material. ACS Applied Materials & Interfaces, 2017, 9, 16351-16359.	8.0	40
60	Theoretical perspective to light outcoupling and management in perovskite light-emitting diodes. Organic Electronics, 2018, 61, 351-358.	2.6	40
61	Light Extraction of Trapped Optical Modes in Polymer Light-Emitting Diodes with Nanoimprinted Double-Pattern Gratings. ACS Applied Materials & Interfaces, 2014, 6, 18139-18146.	8.0	38
62	Interfacial electronic structures of WO3-based intermediate connectors in tandem organic light-emitting diodes. Organic Electronics, 2010, 11, 1578-1583.	2.6	37
63	Enhanced light harvesting in flexible polymer solar cells: synergistic simulation of a plasmonic meta-mirror and a transparent silver mesowire electrode. Journal of Materials Chemistry A, 2016, 4, 18952-18962.	10.3	37
64	Unraveling the Role of Crystallization Dynamics on Luminescence Characteristics of Perovskite Lightâ€Emitting Diodes. Laser and Photonics Reviews, 2021, 15, 2100023.	8.7	36
65	Interfacial "Anchoring Effect―Enables Efficient Largeâ€Area Skyâ€Blue Perovskite Lightâ€Emitting Diodes. Advanced Science, 2021, 8, e2102213.	11.2	35
66	The role of charge generation layers in the operational stability of tandem organic light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 1982.	5.5	34
67	Narrow Bandpass and Efficient Semitransparent Organic Solar Cells Based on Bioinspired Spectrally Selective Electrodes. ACS Nano, 2020, 14, 5998-6006.	14.6	34
68	Realization of efficient light out-coupling in organic light-emitting diodes with surface carbon-coated magnetic alloy nanoparticles. Nanoscale, 2017, 9, 2875-2882.	5.6	33
69	Highâ€Performance Flexible Perovskite Solar Cells Enabled by Lowâ€Temperature ALDâ€Assisted Surface Passivation. Advanced Optical Materials, 2018, 6, 1801153.	7.3	33
70	Strategies to Improve Luminescence Efficiency and Stability of Blue Perovskite Lightâ€Emitting Devices. Small Science, 2021, 1, 2000048.	9.9	33
71	Releasing the Trapped Light for Efficient Silver Nanowiresâ€Based White Flexible Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900985.	7.3	32
72	Interface Engineering of Airâ€Stable nâ€Doping Fullereneâ€Modified TiO ₂ Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901964.	3.7	32

JIAN-XIN TANG

#	Article	IF	CITATIONS
73	Realizing both improved luminance and stability in organic light-emitting devices based on a solution-processed inter-layer composed of MoOX and Au nanoparticles mixture. Organic Electronics, 2014, 15, 961-967.	2.6	31
74	0.7% Roll-off for Solution-Processed Blue Phosphorescent OLEDs with a Novel Electron Transport Material. ACS Photonics, 2017, 4, 449-453.	6.6	30
75	The doping effect of cesium-based compounds on carrier transport and operational stability in organic light-emitting diodes. Organic Electronics, 2014, 15, 1215-1221.	2.6	29
76	Recent Advances in Energetics and Stability of Metal Halide Perovskites for Optoelectronic Applications. Advanced Materials Interfaces, 2019, 6, 1801351.	3.7	29
77	Minimizing Optical Energy Losses for Longâ€Lifetime Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2105813.	14.9	28
78	Simultaneously Enhancing Color Spatial Uniformity and Operational Stability with Deterministic Quasiâ€periodic Nanocone Arrays for Tandem Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 87-94.	7.3	27
79	Recent advances in flexible and wearable organic optoelectronic devices. Journal of Semiconductors, 2018, 39, 011011.	3.7	27
80	Intramolecular H-bond design for efficient orange–red thermally activated delayed fluorescence based on a rigid dibenzo[<i>f</i> , <i>h</i>]pyrido[2,3- <i>b</i>]quinoxaline acceptor. Journal of Materials Chemistry C, 2020, 8, 15728-15734.	5.5	27
81	(<i>Z</i>)-(Thienylmethylene)oxindole-Based Polymers for High-Performance Solar Cells. Macromolecules, 2016, 49, 2145-2152.	4.8	25
82	Plasmonic backscattering enhancement for inverted polymer solar cells. Journal of Materials Chemistry, 2012, 22, 22781.	6.7	23
83	Multifunctional Silver Nanoparticle Interlayer-Modified ZnO as the Electron-Injection Layer for Efficient Inverted Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 9251-9258.	8.0	23
84	The role of gap states on energy level alignment at an α-NPD/HAT(CN) 6 charge generation interface. Organic Electronics, 2015, 24, 120-124.	2.6	22
85	Management of Delayed Fluorophor-Sensitized Exciton Harvesting for Stable and Efficient All-Fluorescent White Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 16736-16742.	8.0	22
86	Surface-induced phase engineering and defect passivation of perovskite nanograins for efficient red light-emitting diodes. Nanoscale, 2021, 13, 340-348.	5.6	22
87	High-Light-Tolerance PbI ₂ Boosting the Stability and Efficiency of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 24692-24701.	8.0	21
88	Correlation between the electronic structures of transition metal oxide-based intermediate connectors and the device performance of tandem organic light-emitting devices. Journal of Materials Chemistry, 2011, 21, 17476.	6.7	20
89	Recent advances in interface engineering of all-inorganic perovskite solar cells. Nanoscale, 2020, 12, 17149-17164.	5.6	20
90	MoO3 doped PTAA for high-performance inverted perovskite solar cells. Applied Surface Science, 2022, 571, 151301.	6.1	19

#	Article	IF	CITATIONS
91	Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss. Optics Express, 2017, 25, 15662.	3.4	18
92	Uniform Stepped Interfacial Energy Level Structure Boosts Efficiency and Stability of CsPbI ₂ Br Solar Cells. Advanced Functional Materials, 2021, 31, 2103316.	14.9	18
93	Background pressure does matter for the growth of graphene single crystal on copper foil: Key roles of oxygen partial pressure. Carbon, 2018, 138, 458-464.	10.3	17
94	Interface engineering improves the performance of green perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 2998-3005.	5.5	16
95	Polymer Solar Cells: Singleâ€Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency (Adv. Mater. 6/2015). Advanced Materials, 2015, 27, 1132-1132.	21.0	15
96	Light outcoupling enhanced flexible organic light-emitting diodes. Optics Express, 2016, 24, A674.	3.4	15
97	Toward ultra-low reflectance semi-transparent organic photovoltaic cells with biomimetic nanostructured transparent electrode. Organic Electronics, 2018, 60, 38-44.	2.6	15
98	Efficient pure-red perovskite light-emitting diodes using dual-Lewis-base molecules for interfacial modification. Journal of Materials Chemistry C, 0, , .	5.5	15
99	Inverted polymer solar cells integrated with small molecular electron collection layer. Organic Electronics, 2013, 14, 1844-1851.	2.6	14
100	The role of cesium fluoride as an n-type dopant on electron transport layer in organic light-emitting diodes. Organic Electronics, 2013, 14, 839-844.	2.6	14
101	Novel small-molecule zwitterionic electrolyte with ultralow work function as cathode modifier for inverted polymer solar cells. Organic Electronics, 2018, 59, 15-20.	2.6	14
102	Thermally activated delayed fluorescence emitters with low concentration sensitivity for highly efficient organic light emitting devices. Journal of Materials Chemistry C, 2019, 7, 8923-8928.	5.5	14
103	Understanding the effect of N2200 on performance of J71: ITIC bulk heterojunction in ternary non-fullerene solar cells. Organic Electronics, 2019, 71, 65-71.	2.6	14
104	Selfâ€Polymerization of Monomer and Induced Interactions with Perovskite for Highly Performed and Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2105290.	14.9	14
105	Surface Plasmonâ€Assisted Transparent Conductive Electrode for Flexible Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1900847.	7.3	13
106	The Effect of Oxygen Uptake on Charge Injection Barriers in Conjugated Polymer Films. ACS Applied Materials & Interfaces, 2018, 10, 6491-6497.	8.0	12
107	High‣fficiency White Organic Lightâ€Emitting Diodes Based on All Nondoped Thermally Activated Delayed Fluorescence Emitters. Advanced Materials Interfaces, 2020, 7, 1901758.	3.7	12
108	Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant. ACS Applied Materials & Interfaces, 2017, 9, 35476-35482.	8.0	11

#	Article	IF	CITATIONS
109	Dual-grating-induced light harvesting enhancement in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 11830-11837.	10.3	11
110	Exploring Red, Green, and Blue Lightâ€Activated Degradation of Perovskite Films and Solar Cells for Near Space Applications. Solar Rrl, 2020, 4, 1900394.	5.8	11
111	Charge-transfer transition regulation of thermally activated delayed fluorescence emitters by changing the valence of sulfur atoms. Journal of Materials Chemistry C, 2020, 8, 17457-17463.	5.5	11
112	Hierarchically Manipulated Charge Recombination for Mitigating Energy Loss in CsPbI2Br Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 41596-41604.	8.0	11
113	Photoemission spectroscopy study on interfacial energy level alignments in tandem organic light-emitting diodes. Journal of Electron Spectroscopy and Related Phenomena, 2015, 204, 186-195.	1.7	9
114	Interaction of the Cation and Vacancy in Hybrid Perovskites Induced by Light Illumination. ACS Applied Materials & Interfaces, 2020, 12, 42369-42377.	8.0	9
115	Unraveling the Role of Substrates on Interface Energetics and Morphology of PCDTBT:PC ₇₀ BM Bulk Heterojunction. Advanced Materials Interfaces, 2015, 2, 1500095.	3.7	8
116	Highly stable and efficient tandem white light emitting diodes based on efficient electron injection and transport. Journal of Materials Chemistry C, 2022, 10, 5994-6001.	5.5	8
117	The modified PEDOT:PSS as cathode interfacial layer for scalable organic solar cells. Organic Electronics, 2019, 71, 143-149.	2.6	7
118	Asymmetric Growth of Tetragon-Shaped Single-Crystalline Graphene Flakes on Copper Foil by Annealing Treatment under Oxygen-Free Conditions. Journal of Physical Chemistry C, 2019, 123, 2642-2650.	3.1	7
119	Micro–Nanostructureâ€Assisted Luminescence in Perovskite Devices. Small Structures, 2021, 2, 2100084.	12.0	7
120	Absorption Spectrum ompensating Configuration Reduces the Energy Loss of Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2022, 32, 2109735.	14.9	7
121	Improving the efficiency and stability of inorganic red perovskite light-emitting diodes using traces of zinc ions. Journal of Materials Chemistry C, 2021, 9, 16682-16692.	5.5	6
122	Switching Hole and Electron Transports of Molecules on Metal Oxides by Energy Level Alignment Tuning. ACS Applied Materials & Interfaces, 2016, 8, 22410-22417.	8.0	5
123	Influences of Polymer Residues on the Growth Properties of Pentacene Thin Film on Graphene Substrates. Journal of Physical Chemistry C, 2018, 122, 5606-5614.	3.1	5
124	A Facile Solutionâ€Processed Light Manipulation Structure for Organic Solar Cells. Advanced Optical Materials, 2019, 7, 1801292.	7.3	5
125	Effects of selenium substitution on optical, electrochemical, and photovoltaic properties of oxindole-based π-conjugated polymers. Organic Electronics, 2019, 64, 131-137.	2.6	4
126	Enhancing the properties of perovskite quantum dot light emitting devices through grid structures formed by trioctylphosphine oxide. Journal of Materials Chemistry C, 2020, 8, 9861-9866.	5.5	4

#	Article	IF	CITATIONS
127	Forcing dimethylacridine crooking to improve the efficiency of orange-red thermally activated delayed fluorescent emitters. Journal of Materials Chemistry C, 2020, 8, 10416-10421.	5.5	4
128	Exploration of the Defect Passivation in Perovskite Materials Using Organic Spacer Cations. Advanced Materials Interfaces, 2022, 9, .	3.7	4
129	Management of Multiâ€Energyâ€Transfer Channels and Exciton Harvesting for Powerâ€Efficient White Thermally Activated Delayed Fluorescence Diodes. Advanced Optical Materials, 2022, 10, .	7.3	4
130	Novel D-σ-A type thermally activated delayed fluorescence emitters with C–S σ bond for the orange-red OLEDs. Organic Electronics, 2021, 96, 106245.	2.6	3
131	Partial energy transfer from blue TADF sensitizer to orange fluorescent dopant for prolonging device lifetime. Materials Today Energy, 2021, 21, 100745.	4.7	3
132	<scp>Hotâ€electron emissionâ€driven</scp> energy recycling in transparent plasmonic electrode for organic solar cells. InformaÄnÃ-Materiály, 2022, 4, .	17.3	3
133	Thermally activated delayed fluorescent emitters based on 3-(phenylsulfonyl)pyridine. Chemical Physics Letters, 2021, 771, 138474.	2.6	2
134	High-efficiency orange thermally activated delayed fluorescence by secondary acceptor modification. Materials Today Energy, 2021, 21, 100819.	4.7	2
135	CsPbBr ₃ microarrays with tunable periodicity, optoelectronic and field emission properties using self-assembled polystyrene template and co-evaporation method. Physical Chemistry Chemical Physics, 2022, 24, 13210-13216.	2.8	1
136	52.1: <i>Invited Paper:</i> Extremely Efficient Flexible Organic Lightâ€Emitting Diodes with Nanostructured Composite Electrodes. Digest of Technical Papers SID International Symposium, 2019, 50, 571-571.	0.3	0
137	17.2: Invited Paper: Pure Delayed Fluorescence Organic Lightâ€Emitting Diodes Featuring Low Driving Voltage and High Brightness, Digest of Technical Papers SID International Symposium, 2021, 52, 229-229	0.3	0