Martin J Llewelyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5655455/publications.pdf

Version: 2024-02-01

66343 60623 7,407 119 42 81 citations h-index g-index papers 128 128 128 9990 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Impact of introducing procalcitonin testing on antibiotic usage in acute NHS hospitals during the first wave of COVID-19 in the UK: a controlled interrupted time series analysis of organization-level data. Journal of Antimicrobial Chemotherapy, 2022, 77, 1189-1196.	3.0	9
2	P14 Procalcitonin evaluation of antibiotic use in COVID-19 hospitalized patients during the first wave of COVID-19: the PEACH study. JAC-Antimicrobial Resistance, 2022, 4, .	2.1	O
3	Impact of neutropenia on clinical manifestations and outcome of Staphylococcus aureus bloodstream infection: a propensity score-based overlap weight analysis in two large, prospectively evaluated cohorts. Clinical Microbiology and Infection, 2022, 28, 1149.e1-1149.e9.	6.0	2
4	Impact of antibiotic use on patient-level risk of death in 36 million hospital admissions in England. Journal of Infection, 2022, 84, 311-320.	3.3	7
5	Persistence of immunogenicity after seven COVID-19 vaccines given as third dose boosters following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK: Three month analyses of the COV-BOOST trial Journal of Infection, 2022, 84, 795-813.	3.3	43
6	Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial. Lancet Infectious Diseases, The, 2022, 22, 1131-1141.	9.1	99
7	PROcalcitonin and NEWS2 evaluation for Timely identification of sepsis and Optimal use of antibiotics in the emergency department (PRONTO): protocol for a multicentre, open-label, randomised controlled trial. BMJ Open, 2022, 12, e063424.	1.9	5
8	Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet, The, 2021, 397, 605-612.	13.7	234
9	Genomic investigation of clinically significant coagulase-negative staphylococci. Journal of Medical Microbiology, 2021, 70, .	1.8	2
10	Co-infection in critically ill patients with COVID-19: an observational cohort study from England. Journal of Medical Microbiology, 2021, 70, .	1.8	81
11	Impact of Immunosuppressive Agents on Clinical Manifestations and Outcome of ⟨i⟩Staphylococcus aureus⟨ i⟩ Bloodstream Infection: A Propensity Score–Matched Analysis in 2 Large, Prospectively Evaluated Cohorts. Clinical Infectious Diseases, 2021, 73, 1239-1247.	5.8	4
12	Accuracy of pancreatic stone protein for the diagnosis of infection in hospitalized adults: a systematic review and individual patient level meta-analysis. Critical Care, 2021, 25, 182.	5.8	20
13	Appraising research policy instrument mixes: a multicriteria mapping study in six European countries of diagnostic innovation to manage antimicrobial resistance. Research Policy, 2021, 50, 104140.	6.4	7
14	Use of Procalcitonin during the First Wave of COVID-19 in the Acute NHS Hospitals: A Retrospective Observational Study. Antibiotics, 2021, 10, 516.	3.7	18
15	Platform Randomised trial of INterventions against COVID-19 In older peoPLE (PRINCIPLE): protocol for a randomised, controlled, open-label, adaptive platform, trial of community treatment of COVID-19 syndromic illness in people at higher risk. BMJ Open, 2021, 11, e046799.	1.9	16
16	Undetected carriage explains apparent Staphylococcus aureus acquisition in a non-outbreak healthcare setting. Journal of Infection, 2021, 83, 332-338.	3.3	2
17	Are medical procedures that induce coughing or involve respiratory suctioning associated with increased generation of aerosols and risk of SARS-CoV-2 infection? A rapid systematic review. Journal of Hospital Infection, 2021, 116, 37-46.	2.9	12
18	Best practice standards for the delivery of NHS infection services in the United Kingdom. Clinical Infection in Practice, 2021, 12, 100095.	0.5	5

#	Article	IF	Citations
19	Antimicrobial resistance determinants are associated with Staphylococcus aureus bacteraemia and adaptation to the healthcare environment: a bacterial genome-wide association study. Microbial Genomics, 2021, 7, .	2.0	15
20	Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet, The, 2021, 398, 2258-2276.	13.7	519
21	A Multinational European Study of Patient Preferences for Novel Diagnostics to ManageÂAntimicrobial Resistance. Applied Health Economics and Health Policy, 2020, 18, 69-79.	2.1	5
22	Optimizing design of research to evaluate antibiotic stewardship interventions: consensus recommendations of a multinational working group. Clinical Microbiology and Infection, 2020, 26, 41-50.	6.0	49
23	Twelve year analysis of aerobic-only blood cultures for routine detection of bacteraemia. Journal of Hospital Infection, 2020, 104, 592-596.	2.9	3
24	Route and duration of antibiotic therapy in acute cellulitis: A systematic review and meta-analysis of the effectiveness and harms of antibiotic treatment. Journal of Infection, 2020, 81, 521-531.	3.3	15
25	Why do hospital prescribers continue antibiotics when it is safe to stop? Results of a choice experiment survey. BMC Medicine, 2020, 18, 196.	5.5	9
26	Defining persistent Staphylococcus aureus bacteraemia: secondary analysis of a prospective cohort study. Lancet Infectious Diseases, The, 2020, 20, 1409-1417.	9.1	84
27	Spontaneously Occurring Small-Colony Variants of Staphylococcus aureus Show Enhanced Clearance by THP-1 Macrophages. Frontiers in Microbiology, 2020, 11, 1300.	3.5	7
28	What diagnostic strategies can help differentiate cellulitis from other causes of red legs in primary care?. BMJ, The, 2020, 368, m54.	6.0	11
29	The impact of diagnostic microbiology on de-escalation of antimicrobial therapy in hospitalised adults. BMC Infectious Diseases, 2020, 20, 102.	2.9	3
30	Optimizing DNA Extraction Methods for Nanopore Sequencing of Neisseria gonorrhoeae Directly from Urine Samples. Journal of Clinical Microbiology, 2020, 58, .	3.9	33
31	Authors' Reply to Hays: "A Multinational European Study of Patient Preferences for Novel Diagnostics to Manage Antimicrobial Resistance― Applied Health Economics and Health Policy, 2020, 18, 459-460.	2.1	0
32	Patient engagement with antibiotic messaging in secondary care: a qualitative feasibility study of the â€review and revise' experience. Pilot and Feasibility Studies, 2020, 6, 43.	1.2	4
33	Using metagenomics to investigate the impact of hospital stay and the ARK intervention on the human gut resistome. Access Microbiology, 2020, 2, .	0.5	1
34	Intervention planning for Antibiotic Review Kit (ARK): a digital and behavioural intervention to safely review and reduce antibiotic prescriptions in acute and general medicine. Journal of Antimicrobial Chemotherapy, 2019, 74, 3362-3370.	3.0	24
35	Predictors of recurrence, early treatment failure and death from Staphylococcus aureus bacteraemia: Observational analyses within the ARREST trial. Journal of Infection, 2019, 79, 332-340.	3 . 3	11
36	Antibiotic Review Kit for Hospitals (ARK-Hospital): study protocol for a stepped-wedge cluster-randomised controlled trial. Trials, 2019, 20, 421.	1.6	7

#	Article	IF	CITATIONS
37	Selective culture enrichment and sequencing of feces to enhance detection of antimicrobial resistance genes in third-generation cephalosporin resistant Enterobacteriaceae. PLoS ONE, 2019, 14, e0222831.	2.5	6
38	Adaptation and implementation of the ARK (Antibiotic Review Kit) intervention to safely and substantially reduce antibiotic use in hospitals: a feasibility study. Journal of Hospital Infection, 2019, 103, 268-275.	2.9	15
39	Anti-influenza hyperimmune intravenous immunoglobulin for adults with influenza A or B infection (FLU-IVIG): a double-blind, randomised, placebo-controlled trial. Lancet Respiratory Medicine,the, 2019, 7, 951-963.	10.7	99
40	The quality of studies evaluating antimicrobial stewardship interventions: a systematic review. Clinical Microbiology and Infection, 2019, 25, 555-561.	6.0	51
41	Draft Genome Sequences of 64 Type Strains of 50 Species and 25 Subspecies of the Genus Staphylococcus Rosenbach 1884. Microbiology Resource Announcements, 2019, 8, .	0.6	7
42	Duration of antibiotic treatment for common infections in English primary care: cross sectional analysis and comparison with guidelines. BMJ: British Medical Journal, 2019, 364, 1440.	2.3	74
43	Mathematical modelling for antibiotic resistance control policy: do we know enough?. BMC Infectious Diseases, 2019, 19, 1011.	2.9	37
44	Title is missing!. , 2019, 14, e0222831.		0
45	Title is missing!. , 2019, 14, e0222831.		0
46	Title is missing!. , 2019, 14, e0222831.		0
47	Title is missing!. , 2019, 14, e0222831.		0
48	A national quality incentive scheme to reduce antibiotic overuse in hospitals: evaluation of perceptions and impact. Journal of Antimicrobial Chemotherapy, 2018, 73, 1708-1713.	3.0	19
49	Robust Prediction of Resistance to Trimethoprim in Staphylococcus aureus. Cell Chemical Biology, 2018, 25, 339-349.e4.	5.2	32
50	Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet, The, 2018, 391, 668-678.	13.7	140
51	Survival following Staphylococcus aureus bloodstream infection: A prospective multinational cohort study assessing the impact of place of care. Journal of Infection, 2018, 77, 516-525.	3.3	48
52	Trends over time in Escherichia coli bloodstream infections, urinary tract infections, and antibiotic susceptibilities in Oxfordshire, UK, 1998–2016: a study of electronic health records. Lancet Infectious Diseases, The, 2018, 18, 1138-1149.	9.1	121
53	Overview of systematic reviews assessing the evidence for shorter versus longer duration antibiotic treatment for bacterial infections in secondary care. PLoS ONE, 2018, 13, e0194858.	2.5	18
54	Adjunctive rifampicin to reduce early mortality from Staphylococcus aureus bacteraemia: the ARREST RCT. Health Technology Assessment, 2018, 22, 1-148.	2.8	10

#	Article	IF	Citations
55	Toxigenic Clostridium difficile colonization among hospitalised adults; risk factors and impact on survival. Journal of Infection, 2017, 75, 20-25.	3.3	13
56	Re-emergence of methicillin susceptibility in a resistant lineage of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2017, 72, dkw570.	3.0	22
57	Whole-Genome Sequencing Reveals the Contribution of Long-Term Carriers in Staphylococcus aureus Outbreak Investigation. Journal of Clinical Microbiology, 2017, 55, 2188-2197.	3.9	26
58	Mortality risks associated with emergency admissions during weekends and public holidays: an analysis of electronic health records. Lancet, The, 2017, 390, 62-72.	13.7	114
59	Impact of recurrent Clostridium difficile infection: hospitalization and patient quality of life. Journal of Antimicrobial Chemotherapy, 2017, 72, 2647-2656.	3.0	54
60	Staphylococcus aureus in critical care – Authors' reply. Lancet Infectious Diseases, The, 2017, 17, 580-581.	9.1	0
61	Diagnostic yield of FDG-PET/CT in fever ofÂunknown origin: a systematic review, meta-analysis, and Delphi exercise. Clinical Radiology, 2017, 72, 764-771.	1.1	63
62	The antibiotic course has had its day. BMJ: British Medical Journal, 2017, 358, j3418.	2.3	192
63	Severity of illness and the weekend effect – Authors' reply. Lancet, The, 2017, 390, 1735.	13.7	11
64	Staphylococcal and streptococcal infections. Medicine, 2017, 45, 727-734.	0.4	7
65	Proposed primary endpoints for use in clinical trials that compare treatment options for bloodstream infection in adults: a consensus definition. Clinical Microbiology and Infection, 2017, 23, 533-541.	6.0	58
66	Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: a longitudinal cohort study based on whole-genome sequencing. Lancet Infectious Diseases, The, 2017, 17, 207-214.	9.1	155
67	Mortality Risks Associated With Emergency Admissions During Weekends and Public Holidays: An Analysis of Electronic Health Records. Obstetrical and Gynecological Survey, 2017, 72, 699-701.	0.4	0
68	Severe infections emerge from commensal bacteria by adaptive evolution. ELife, 2017, 6, .	6.0	93
69	Severity of Systemic Inflammatory Response Syndrome Affects the Blood Levels of Circulating Inflammatory-Relevant MicroRNAs. Frontiers in Immunology, 2017, 8, 1977.	4.8	44
70	An ageing population and changing UK bacteraemia profile may affect the characteristics and microbiology of infective spondylodiscitis. Journal of Infection, 2016, 73, 91-93.	3.3	3
71	Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Nature Microbiology, 2016, 1, 16041.	13.3	247
72	Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS). Scientific Reports, 2016, 6, 28006.	3.3	95

#	Article	lF	CITATIONS
73	Gram-negative bacteraemia; a multi-centre prospective evaluation of empiric antibiotic therapy and outcome in English acute hospitals. Clinical Microbiology and Infection, 2016, 22, 244-251.	6.0	61
74	Induction of Human Regulatory T Cells with Bacterial Superantigens. Methods in Molecular Biology, 2016, 1396, 181-206.	0.9	3
75	Antibiotic policies in acute English NHS trusts: implementation of †Start Smart†Then Focus†and relationship with ⟨i⟩Clostridium difficile⟨/i⟩ infection rates. Journal of Antimicrobial Chemotherapy, 2015, 70, 1230-1235.	3.0	34
76	Reply to Mills and Linkin. Clinical Infectious Diseases, 2014, 59, 752-753.	5.8	0
77	Whole-Genome Sequencing Shows That Patient-to-Patient Transmission Rarely Accounts for Acquisition of Staphylococcus aureus in an Intensive Care Unit. Clinical Infectious Diseases, 2014, 58, 609-618.	5.8	142
78	Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing. Journal of Clinical Microbiology, 2014, 52, 1182-1191.	3.9	303
79	Staphylococcus aureus bloodstream infection: A pooled analysis of five prospective, observational studies. Journal of Infection, 2014, 68, 242-251.	3.3	207
80	The role of the humoral immune response to Clostridium difficile toxins A and B in susceptibility to C. difficile infection: A case–control study. Anaerobe, 2014, 27, 82-86.	2.1	17
81	Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone. Journal of Hospital Infection, 2014, 86, 83-89.	2.9	31
82	Sepsis biomarkers in unselected patients on admission to intensive or high-dependency care. Critical Care, 2013, 17, R60.	5.8	77
83	Influence of cohorting patients with Clostridium difficile infection on risk of symptomatic recurrence. Journal of Hospital Infection, 2013, 85, 17-21.	2.9	16
84	The usefulness of whole genome sequencing in the management of Staphylococcus aureus infections. Clinical Microbiology and Infection, 2013, 19, 784-789.	6.0	56
85	Whole genome sequencing in the prevention and control of Staphylococcus aureus infection. Journal of Hospital Infection, 2013, 83, 14-21.	2.9	59
86	Vancomycin MIC as a predictor of outcome in MRSA bacteraemia in the UK context. Journal of Antimicrobial Chemotherapy, 2013, 68, 2641-2647.	3.0	10
87	Fidaxomicin Versus Vancomycin for Clostridium difficile Infection: Meta-analysis of Pivotal Randomized Controlled Trials. Clinical Infectious Diseases, 2012, 55, S93-S103.	5.8	228
88	Probiotics for the prevention and treatment of Clostridium difficile in older patients. Age and Ageing, 2012, 41, 706-711.	1.6	10
89	Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infectious Diseases, The, 2012, 12, 281-289.	9.1	644
90	Adjunctive rifampicin to reduce early mortality from Staphylococcus aureus bacteraemia (ARREST): study protocol for a randomised controlled trial. Trials, 2012, 13, 241.	1.6	29

#	Article	IF	Citations
91	Induction of contactâ€dependent CD8 ⁺ regulatory T cells through stimulation with staphylococcal and streptococcal superantigens*. Immunology, 2012, 135, 158-167.	4.4	20
92	Clinical management of Staphylococcus aureus bacteraemia. Lancet Infectious Diseases, The, 2011, 11, 208-222.	9.1	230
93	Fluke Infertility: The Late Cost of a Quick Swim. Journal of Travel Medicine, 2011, 18, 61-62.	3.0	9
94	Diagnosis of Clostridium difficile infection is associated with a small increased risk of death in elderly inpatients. Journal of Hospital Infection, 2010, 74, 401-403.	2.9	3
95	Impact of an intervention to control Clostridium difficile infection on hospital- and community-onset disease; an interrupted time series analysis. Clinical Microbiology and Infection, 2010, 16, 1297-1302.	6.0	51
96	Teaching of clinical pharmacology and therapeutics in UK medical schools: current status in 2009. British Journal of Clinical Pharmacology, 2010, 70, 143-148.	2.4	54
97	The Management of Staphylococcus aureus Bacteremia in the United Kingdom and Vietnam: A Multi-Centre Evaluation. PLoS ONE, 2010, 5, e14170.	2.5	41
98	Predictors of Death after <i>Clostridium difficile </i> Infection: A Report on 128 Strainâ€Typed Cases from a Teaching Hospital in the United Kingdom. Clinical Infectious Diseases, 2010, 50, e77-e81.	5.8	70
99	How is diarrhoea managed in UK care homes? A survey with implications for recognition and control of Clostridium difficile infection. Journal of Public Health, 2010, 32, 472-478.	1.8	6
100	Clinical and Microbiological Determinants of Outcome inStaphylococcus aureusBacteraemia. International Journal of Microbiology, 2010, 2010, 1-7.	2.3	18
101	Superantigen-Induced Proliferation of Human CD4+CD25â^' T Cells Is Followed by a Switch to a Functional Regulatory Phenotype. Journal of Immunology, 2010, 185, 6591-6598.	0.8	98
102	Paradoxical Relationship between the Clinical Outcome of <i>Staphylo </i> coccus aureus Bacteremia and the Minimum Inhibitory Concentration of Vancomycin. Clinical Infectious Diseases, 2009, 48, 997-998.	5.8	51
103	Clostridium difficile infection: impact of an initiative to reduce rates and improve outcomes. Journal of Infection, 2009, 59, S443.	3.3	0
104	A lecturer from BSMS explains. BMJ: British Medical Journal, 2009, 338, b398-b398.	2.3	1
105	The rise of invasive s. aureus infection in brighton; poor practice or bad bugs?. Journal of Infection, 2008, 56, 302-303.	3.3	0
106	Tracking the Microbes in Sepsis: Advancements in Treatment Bring Challenges for Microbial Epidemiology. Clinical Infectious Diseases, 2007, 44, 1343-1348.	5.8	26
107	The TCR VÂ signature of bacterial superantigens spreads with stimulus strength. International Immunology, 2006, 18, 1433-1441.	4.0	32
108	Human Leukocyte Antigen Class II Haplotypes that Protect against or Predispose to Streptococcal Toxic Shock. Clinical Infectious Diseases, 2005, 41, S445-S448.	5.8	13

#	Article	IF	CITATIONS
109	Diagnostic utility of bone marrow sampling in HIV-infected patients since the advent of highly active antiretroviral therapy. International Journal of STD and AIDS, 2005, 16, 686-690.	1.1	11
110	HLA Class II Polymorphisms Determine Responses to Bacterial Superantigens. Journal of Immunology, 2004, 172, 1719-1726.	0.8	93
111	Superantigens: microbial agents that corrupt immunity. Lancet Infectious Diseases, The, 2002, 2, 156-162.	9.1	273
112	Diagnosis of infection in sepsis. Intensive Care Medicine, 2001, 27, S10-S32.	8.2	51
113	Superantigen antagonist peptides. Critical Care, 2001, 5, 53.	5.8	9
114	Tuberculosis diagnosed during pregnancy: a prospective study from London. Thorax, 2000, 55, 129-132.	5.6	70
115	Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet, The, 2000, 355, 618-621.	13.7	691
116	Influence of Polymorphism in the Genes for the Interleukin (IL)-1 Receptor Antagonist and IL- $1\hat{l}^2$ on Tuberculosis. Journal of Experimental Medicine, 1999, 189, 1863-1874.	8.5	280
117	Acute adrenal insufficiency precipitated by isolated involvement of the adrenal gland by tuberculosis. Journal of Infection, 1999, 39, 244-245.	3.3	5
118	Anti-Endotoxin Antibodies in Sepsis: A Critical Evaluation. Sepsis, 1999, 3, 39-45.	0.5	4
119	Chloroquine/ hydroxychloroquine prevention of coronavirus disease (COVID-19) in the healthcare setting; protocol for a randomised, placebo-controlled prophylaxis study (COPCOV). Wellcome Open Research, 0, 5, 241.	1.8	5