
Vladimir I Shalaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5655291/publications.pdf Version: 2024-02-01

VIADIMID | SHALAFY

#	Article	IF	CITATIONS
1	Understanding all-optical switching at the epsilon-near-zero point: a tutorial review. Applied Physics B: Lasers and Optics, 2022, 128, 1.	2.2	7
2	Near-zero-index ultra-fast pulse characterization. Nature Communications, 2022, 13, .	12.8	6
3	Single and Multiâ€Mode Directional Lasing from Arrays of Dielectric Nanoresonators. Laser and Photonics Reviews, 2021, 15, 2000411.	8.7	51
4	Visible photon generation via four-wave mixing in near-infrared near-zero-index thin films. Optics Letters, 2021, 46, 5433.	3.3	4
5	Broad Frequency Shift of Parametric Processes in Epsilon-Near-Zero Time-Varying Media. Applied Sciences (Switzerland), 2020, 10, 1318.	2.5	35
6	Ten years of spasers and plasmonic nanolasers. Light: Science and Applications, 2020, 9, 90.	16.6	192
7	Dynamically controlled random lasing with colloidal titanium carbide MXene. Optical Materials Express, 2020, 10, 2304.	3.0	1
8	Spatiotemporal light control with active metasurfaces. Science, 2019, 364, .	12.6	581
9	Near-zero-index materials for photonics. Nature Reviews Materials, 2019, 4, 742-760.	48.7	234
10	Exploring Timeâ€Resolved Multiphysics of Active Plasmonic Systems with Experimentâ€Based Gain Models. Laser and Photonics Reviews, 2019, 13, 1800071.	8.7	9
11	Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media. Physical Review Letters, 2018, 120, 043902.	7.8	98
12	High Temperature Sensing with Refractory Plasmonic Metasurfaces. , 2018, , .		1
13	Control of laminar-turbulent transition and its influence on flow structure. AIP Conference Proceedings, 2018, , .	0.4	0
14	Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides. Optical Materials Express, 2018, 8, 3392.	3.0	42
15	Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nature Communications, 2017, 8, 15829.	12.8	91
16	Nanolasers Enabled by Metallic Nanoparticles: From Spasers to Random Lasers. Laser and Photonics Reviews, 2017, 11, 1700212.	8.7	63
17	Laminar-turbulent transition in the vicinity of blunt leading edge of flat delta wing in hypersonic flow. AIP Conference Proceedings, 2017, , .	0.4	2
18	Physical mechanisms of longitudinal vortexes formation, appearance of zones with high heat fluxes and early transition in hypersonic flow over delta wing with blunted leading edges. AIP Conference Proceedings, 2016, , .	0.4	4

#	Article	IF	CITATIONS
19	Singularities of 3D laminar boundary layer equations and flow structure in their vicinity on conical bodies. AIP Conference Proceedings, 2016, , .	0.4	2
20	Transparent conducting oxides as dynamic materials at telecom wavelengths. , 2015, , .		0
21	Highly directional spaser array for the red wavelength region. Laser and Photonics Reviews, 2014, 8, 896-903.	8.7	69
22	The Case for Plasmonics. Science, 2010, 328, 440-441.	12.6	524
23	Loss-free and active optical negative-index metamaterials. Nature, 2010, 466, 735-738.	27.8	729