Nguyen Tien Son

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5655128/publications.pdf

Version: 2024-02-01

232 papers

7,904 citations

44066 48 h-index 79 g-index

238 all docs

238 docs citations

times ranked

238

3780 citing authors

#	Article	IF	CITATIONS
1	Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nature Materials, 2022, 21, 67-73.	27.5	80
2	Broadband single-mode planar waveguides in monolithic 4H-SiC. Journal of Applied Physics, 2022, 131, 025703.	2.5	1
3	Five-second coherence of a single spin with single-shot readout in silicon carbide. Science Advances, 2022, 8, eabm5912.	10.3	57
4	Electromagnetically induced transparency in inhomogeneously broadened divacancy defect ensembles in SiC. Journal of Applied Physics, 2022, 131, 094401.	2.5	1
5	Fluorescence spectrum and charge state control of divacancy qubits via illumination at elevated temperatures in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4</mml:mn><mml:mi>H</mml:mi>silicon carbide. Physical Review B. 2022. 105</mml:mrow></mml:math>	> ³ /mml:m	rów>
6	Spin-Optical Dynamics and Quantum Efficiency of a Single V1 Center in Silicon Carbide. Physical Review Applied, 2022, 17 , .	3.8	5
7	Modified divacancies in 4H-SiC. Journal of Applied Physics, 2022, 132, .	2.5	3
8	Narrow inhomogeneous distribution of spin-active emitters in silicon carbide. Applied Physics Letters, 2021, 118, .	3.3	13
9	Charge state control of the silicon vacancy and divacancy in silicon carbide. Journal of Applied Physics, 2021, 129, .	2.5	16
10	Towards identification of silicon vacancy-related electron paramagnetic resonance centers in 4H -SiC. Physical Review B, 2021, 104, .	3.2	9
11	Deep levels related to the carbon antisite–vacancy pair in 4H-SiC. Journal of Applied Physics, 2021, 130, .	2.5	5
12	Nanofabricated and Integrated Colour Centres in Silicon Carbide with High-Coherence Spin-Optical Properties., 2021,,.		0
13	Dipolar spin relaxation of divacancy qubits in silicon carbide. Npj Computational Materials, 2021, 7, .	8.7	7
14	Spectrally reconfigurable quantum emitters enabled by optimized fast modulation. Npj Quantum Information, 2020, 6, .	6.7	38
15	Electron paramagnetic resonance and theoretical study of gallium vacancy in $\langle b \rangle \langle i \rangle \hat{l}^2 \langle i \rangle \langle b \rangle$ -Ga2O3. Applied Physics Letters, 2020, 117, .	3.3	33
16	Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nature Materials, 2020, 19, 1319-1325.	27.5	98
17	in <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mn>4</mml:mn><mml:mi>H</mml:mi></mml:math> - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:mi>Si</mml:mi><mml:mi< td=""><td>3.8</td><td>47</td></mml:mi<></mml:mrow></mml:math 	3.8	47
18	mathvariant="normal">C. Physical Review Applied, 2020, 13, . Developing silicon carbide for quantum spintronics. Applied Physics Letters, 2020, 116, .	3.3	101

#	Article	IF	Citations
19	Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide. Nature Communications, 2020, 11, 2516.	12.8	56
20	Spin-relaxation times exceeding seconds for color centers with strong spin–orbit coupling in SiC. New Journal of Physics, 2020, 22, 103051.	2.9	15
21	Static and Dynamic Stark Tuning of the Silicon Vacancy in Silicon Carbide. , 2020, , .		0
22	Optical Properties of Vanadium in 4 <i>H</i> Silicon Carbide for Quantum Technology. Physical Review Applied, 2019, 12, .	3.8	51
23	Electrical Charge State Manipulation of Single Silicon Vacancies in a Silicon Carbide Quantum Optoelectronic Device. Nano Letters, 2019, 19, 7173-7180.	9.1	61
24	Energy levels and charge state control of the carbon antisite-vacancy defect in 4H-SiC. Applied Physics Letters, 2019, 114, .	3.3	17
25	High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nature Communications, 2019, 10, 1954.	12.8	167
26	Identification of divacancy and silicon vacancy qubits in 6H-SiC. Applied Physics Letters, 2019, 114, 112107.	3.3	28
27	Ligand hyperfine interactions at silicon vacancies in 4H-SiC. Journal of Physics Condensed Matter, 2019, 31, 195501.	1.8	13
28	First-Principles Study on Photoluminescence Quenching of Divacancy in 4H SiC. Materials Science Forum, 2019, 963, 714-717.	0.3	1
29	Electrical and optical control of single spins integrated in scalable semiconductor devices. Science, 2019, 366, 1225-1230.	12.6	157
30	Stabilization of point-defect spin qubits by quantum wells. Nature Communications, 2019, 10, 5607.	12.8	42
31	Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions. Nature Communications, 2019, 10, 5569.	12.8	43
32	First principles predictions of magneto-optical data for semiconductor point defect identification: the case of divacancy defects in 4H–SiC. New Journal of Physics, 2018, 20, 023035.	2.9	39
33	Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide. Physical Review Applied, 2018, 9, .	3.8	90
34	Excitation properties of the divacancy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4</mml:mn><mml:mi>H<td>ni>8/2nml:r</td><td>mrew+></td></mml:mi></mml:mrow></mml:math>	ni> 8/2 nml:r	mr ew +>
35	Identification and tunable optical coherent control of transition-metal spins in silicon carbide. Npj Quantum Information, 2018, 4, .	6.7	53
36	Bright single photon sources in lateral silicon carbide light emitting diodes. Applied Physics Letters, 2018, 112, .	3.3	33

#	Article	IF	Citations
37	Scalable Quantum Photonics with Single Color Centers in Silicon Carbide. Nano Letters, 2017, 17, 1782-1786.	9.1	129
38	Resonant optical spectroscopy and coherent control of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant="normal">r</mml:mi>></mml:mrow><mml:mrow><mml:mn>4</mml:mn><mml:mo>+</mml:mo><th>3.2 ml:mrow></th><th>59 </th></mml:mrow></mml:msup></mml:mrow></mml:math>	3.2 ml:mrow>	59
39	ensembles in SiC and GaN. Physical Review B, 2017, 95, . Identification of Si-vacancy related room-temperature qubits in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4</mml:mn><mml:mi>H</mml:mi> silicon carbide. Physical Review B, 2017, 96, .</mml:mrow></mml:math>	> 8∤⊉nml:mr	ʻow>
40	Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface. Physical Review X, 2017, 7, .	8.9	125
41	Stark tuning and electrical charge state control of single divacancies in silicon carbide. Applied Physics Letters, 2017, 111, .	3.3	62
42	Scalable Quantum Photonics with Single Color Centers in Silicon Carbide. , 2017, , .		2
43	Electronic properties of defects in highâ€fluence electronâ€irradiated bulk GaN. Physica Status Solidi (B): Basic Research, 2016, 253, 521-526.	1.5	3
44	Electronic properties of Si-doped Al $<$ i $>xi>Galâ^xN with aluminum mole fractions above 80%. Journal of Applied Physics, 2016, 120, .$	2.5	47
45	Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy. Journal of Applied Physics, 2016, 119, .	2.5	8
46	Donor and double-donor transitions of the carbon vacancy related EH6â-7 deep level in 4H-SiC. Journal of Applied Physics, 2016, 119, .	2.5	16
47	Electronic properties of the residual donor in unintentionally doped \hat{l}^2 -Ga2O3. Journal of Applied Physics, 2016, 120, .	2.5	68
48	n-Type conductivity bound by the growth temperature: the case of Al _{0.72} Ga _{0.28} N highly doped by silicon. Journal of Materials Chemistry C, 2016, 4, 8291-8296.	5.5	8
49	Vector Magnetometry Using Silicon Vacancies in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>4</mml:mn><mml:mi>H</mml:mi></mml:math> -SiC Under Ambient Conditions. Physical Review Applied, 2016, 6, .	3.8	66
50	Optical properties and Zeeman spectroscopy of niobium in silicon carbide. Physical Review B, 2015, 92, .	3.2	6
51	Exciton luminescence in AlN triggered by hydrogen and thermal annealing. Applied Physics Letters, 2015, 106, .	3.3	11
52	Shallow donor in natural MoS2. Physica Status Solidi - Rapid Research Letters, 2015, 9, 707-710.	2.4	5
53	On the behavior of silicon donor in conductive Al <i>_x</i> Ga _{1–<i>x</i>} N (0.63) Tj ETQ	01_1 0.78	4314 rgB <mark>T</mark>
54	Conjugated Polyelectrolyte Blends for Electrochromic and Electrochemical Transistor Devices. Chemistry of Materials, 2015, 27, 6385-6393.	6.7	83

#	Article	IF	CITATIONS
55	Isolated electron spins in silicon carbide with millisecond coherence times. Nature Materials, 2015, 14, 160-163.	27.5	362
56	Coherent control of single spins in silicon carbide at room temperature. Nature Materials, 2015, 14, 164-168.	27.5	472
57	Hydrogen at zinc vacancy of ZnO: An EPR and ESEEM study. , 2014, , .		4
58	Quantitative comparison between Z1â^•2 center and carbon vacancy in 4H-SiC. Journal of Applied Physics, 2014, 115, .	2. 5	39
59	Stable and metastable Si negative-U centers in AlGaN and AlN. Applied Physics Letters, 2014, 105, .	3.3	47
60	Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy. Applied Physics Letters, 2014, 105, .	3.3	21
61	Characterization of the nitrogen split interstitial defect in wurtzite aluminum nitride using density functional theory. Journal of Applied Physics, 2014, 116, .	2.5	9
62	Theoretical and electron paramagnetic resonance studies of hyperfine interaction in nitrogen doped 4H and 6H SiC. Journal of Applied Physics, 2014, 115, .	2.5	17
63	Electronic Defects in Electron-Irradiated Silicon Carbide and III-Nitrides. , 2014, , 417-451. Negative- <mml:math< td=""><td></td><td>0</td></mml:math<>		0
64	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>U</mml:mi> carbon vacancy in 4 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>H</mml:mi></mml:math> -SiC: Assessment of charge correction schemes and identification of the negative carbon vacancy at the quasicubic	3.2	45
65	site. Physical Review B, 2013, 88, . Negative-U behavior of the Si donor in Al0.77Ga0.23N. Applied Physics Letters, 2013, 103, 042101.	3.3	9
66	Electron Paramagnetic Resonance Studies of Nb in 6H-SiC. Materials Science Forum, 2013, 740-742, 385-388.	0.3	0
67	Magnetic resonance identification of hydrogen at a zinc vacancy in ZnO. Journal of Physics Condensed Matter, 2013, 25, 335804.	1.8	13
68	The complex impact of silicon and oxygen on the n-type conductivity of high-Al-content AlGaN. Applied Physics Letters, 2013, 102, .	3.3	30
69	Investigation on origin of $Z1/2$ center in SiC by deep level transient spectroscopy and electron paramagnetic resonance. Applied Physics Letters, 2013, 102, .	3.3	56
70	Electronic Configuration of Tungsten in 4H-, 6H-, and 15R-SiC. Materials Science Forum, 2012, 717-720, 211-216.	0.3	0
71	Electron paramagnetic resonance and theoretical studies of Nb in 4H- and 6H-SiC. Journal of Applied Physics, 2012, 112, .	2.5	11
72	Transition Metal Defects in Cubic and Hexagonal Polytypes of SiC: Site Selection, Magnetic and Optical Properties from <i>Ab Initio</i> Calculations. Materials Science Forum, 2012, 717-720, 205-210.	0.3	2

#	ARTICLE Negative- <mmi:math <="" th="" xmins:mmi="http://www.w3.org/1998/iviath/iviathiviL"><th>IF</th><th>Citations</th></mmi:math>	IF	Citations
73	display="inline"> <mml:mi>U</mml:mi> System of Carbon Vacancy in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">4<mml:mi>H</mml:mi></mml:math> -SiC. Physical Review Letters,	7.8	219
74	Optical identification and electronic configuration of tungsten in 4H- and 6H-SiC. Physica B: Condensed Matter, 2012, 407, 1462-1466.	2.7	14
75	Asymmetric Split-Vacancy Defects in SiC Polytypes: A Combined Theoretical and Electron Spin Resonance Study. Physical Review Letters, 2011, 107, 195501.	7.8	22
76	Silicon in AlN: shallow donor and DX behaviors. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2167-2169.	0.8	7
77	Defects at nitrogen site in electron-irradiated AlN. Applied Physics Letters, 2011, 98, .	3.3	10
78	Shallow donor and DX states of Si in AlN. Applied Physics Letters, 2011, 98, .	3.3	49
79	Radiation-induced defects in GaN. Physica Scripta, 2010, T141, 014015.	2.5	6
80	The EI4 EPR centre in 6H SiC. Physica Scripta, 2010, T141, 014013.	2.5	0
81	EPR and ENDOR Studies of Shallow Donors in SiC. Applied Magnetic Resonance, 2010, 39, 49-85.	1.2	14
82	Magnetic characterization of conductance electrons in GaN. Physica Status Solidi (B): Basic Research, 2010, 247, 1728-1731.	1.5	5
83	The Carbon Vacancy Related EI4 Defect in 4H-SiC. Materials Science Forum, 2010, 645-648, 399-402.	0.3	1
84	Group-II acceptors in wurtzite AIN: A screened hybrid density functional study. Applied Physics Letters, 2010, 96, .	3.3	34
85	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mn>4</mml:mn><mml:mi>H</mml:mi></mml:mrow> - and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mn>6</mml:mn><mml:mi>H</mml:mi><mml:mtext>-SiC</mml:mtext><td>3.2</td><td>12</td></mml:mrow></mml:math>	3.2	12
86	Physical Review B, 2010, 82, . Identification of the gallium vacancy–oxygen pair defect in GaN. Physical Review B, 2009, 80, .	3.2	43
87	Defects Introduced by Electron-Irradiation at Low Temperatures in SiC. Materials Science Forum, 2009, 615-617, 377-380.	0.3	2
88	Photo-EPR Studies on Low-Energy Electron-Irradiated 4H-SiC. Materials Science Forum, 2009, 615-617, 401-404.	0.3	0
89	The silicon vacancy in SiC. Physica B: Condensed Matter, 2009, 404, 4354-4358.	2.7	91
90	Deep levels in lowâ€energy electronâ€irradiated 4Hâ€6iC. Physica Status Solidi - Rapid Research Letters, 2009, 3, 121-123.	2.4	10

#	Article	IF	CITATIONS
91	Identification of a Frenkel-pair defect in electron-irradiated 3 <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>C</mml:mi></mml:mrow></mml:math> SiC. Physical Review B, 2009, 80, .	3.2	10
92	Water adsorption on fullerene-like carbon nitride overcoats. Thin Solid Films, 2008, 517, 1106-1110.	1.8	40
93	EPR identification of intrinsic defects in SiC. Physica Status Solidi (B): Basic Research, 2008, 245, 1298-1314.	1.5	60
94	Common point defects in as-grown ZnO substrates studied by optical detection of magnetic resonance. Journal of Crystal Growth, 2008, 310, 1006-1009.	1.5	4
95	Intrinsic Defects in HPSI 6H-SiC: an EPR Study. Materials Science Forum, 2008, 600-603, 381-384.	0.3	4
96	New Type of Defects Explored by Theory: Silicon Interstitial Clusters in SiC. Materials Science Forum, 2008, 600-603, 413-416.	0.3	0
97	EPR Identification of Defects and Impurities in SiC: To be Decisive. Materials Science Forum, 2008, 600-603, 279-284.	0.3	2
98	Electron paramagnetic resonance study on n-type electron-irradiated 3C-SiC. Journal of Physics: Conference Series, 2008, 100, 042032.	0.4	0
99	Theoretical study of small silicon clusters in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4</mml:mn><mml:mi>H</mml:mi><mml:mtext>â^'</mml:mtext><mml:m mathvariant="normal">Si<mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi< td=""><td>nä.2</td><td>16</td></mml:mi<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:m></mml:mrow></mml:math>	n ä. 2	16
100	Deep levels and carrier compensation in V-doped semi-insulating 4H-SiC. Applied Physics Letters, 2007, 91, 202111.	3.3	10
101	Recombination centers in as-grown and electron-irradiated ZnO substrates. Journal of Applied Physics, 2007, 102, 093504.	2.5	18
102	Influence of Cooling Rate after High Temperature Annealing on Deep Levels in High-Purity Semi-Insulating 4H-SiC. Materials Science Forum, 2007, 556-557, 371-374.	0.3	2
103	A Theoretical Study on Aluminium-Related Defects in SiC. Materials Science Forum, 2007, 556-557, 445-448.	0.3	3
104	Deep Acceptor Levels of the Carbon Vacancy-Carbon Antisite Pairs in 4H-SiC. Materials Science Forum, 2007, 556-557, 449-452.	0.3	4
105	Intrinsic Defects in Semi-Insulating SiC: Deep Levels and their Roles in Carrier Compensation. Materials Science Forum, 2007, 556-557, 465-468.	0.3	4
106	Ab initiosupercell calculations on aluminum-related defects in SiC. Physical Review B, 2007, 75, .	3.2	24
107	Defects and carrier compensation in semi-insulating 4Hâ^'SiCsubstrates. Physical Review B, 2007, 75, .	3.2	60
108	Prominent defects in semi-insulating SiC substrates. Physica B: Condensed Matter, 2007, 401-402, 67-72.	2.7	17

#	Article	IF	CITATIONS
109	Magnetic resonance studies of defects in electron-irradiated ZnO substrates. Physica B: Condensed Matter, 2007, 401-402, 507-510.	2.7	2
110	Clustering of vacancy defects in high-purity semi-insulating SiC. Physical Review B, 2007, 75, .	3.2	30
111	Electron paramagnetic resonance and theoretical studies of shallow phosphorous centers in 3C-,4H-, and 6Hâ^SiC. Physical Review B, 2006, 73, .	3.2	31
112	Electrical characterization of metastable carbon clusters inSiC: A theoretical study. Physical Review B, 2006, 73, .	3.2	38
113	Intrinsic defects in high-purity SiC. Microelectronic Engineering, 2006, 83, 130-134.	2.4	18
114	Pulsed EPR studies of Phosphorus shallow donors in diamond and SiC. Physica B: Condensed Matter, 2006, 376-377, 358-361.	2.7	13
115	Identification of the Carbon Antisite-Vacancy Pair in4H-SiC. Physical Review Letters, 2006, 96, 145501.	7.8	72
116	Divacancy in 4H-SiC. Physical Review Letters, 2006, 96, 055501.	7.8	172
117	Identification of divacancies in 4H-SiC. Physica B: Condensed Matter, 2006, 376-377, 334-337.	2.7	6
118	Optical and morphological features of bulk and homoepitaxial ZnO. Superlattices and Microstructures, 2006, 39, 247-256.	3.1	10
119	Divacancy Model for P6/P7 Centers in 4H- and 6H-SiC. Materials Science Forum, 2006, 527-529, 527-530.	0.3	6
120	Divacancy and Its Identification: Theory. Materials Science Forum, 2006, 527-529, 523-526.	0.3	11
121	Characterization of Semi-insulating SiC. Materials Research Society Symposia Proceedings, 2006, 911, 3.	0.1	4
122	Shallow P Donors in 3C-, 4H- and 6H-SiC. Materials Science Forum, 2006, 527-529, 593-596.	0.3	2
123	Electron Paramagnetic Resonance Study of the HEI4/SI5 Center in 4H-SiC. Materials Science Forum, 2006, 527-529, 543-546.	0.3	7
124	Optical Studies of Deep Centers in Semi-Insulating SiC. Materials Science Forum, 2006, 527-529, 455-460.	0.3	2
125	Signature of the Negative Carbon Vacancy-Antisite Complex. Materials Science Forum, 2006, 527-529, 539-542.	0.3	4
126	Electron Paramagnetic Resonance of Shallow Phosphorous Centers in 4H- and 6H-SiC. Materials Science Forum, 2005, 483-485, 515-518.	0.3	5

#	Article	IF	CITATIONS
127	Theoretical Investigations of Complexes of p-Type Dopants and Carbon Interstitial in SiC: Bistable, Negative-U Defects. Materials Science Forum, 2005, 483-485, 519-522.	0.3	5
128	Activation of shallow boron acceptor in Câ•B coimplanted silicon carbide: A theoretical study. Applied Physics Letters, 2005, 86, 102108.	3.3	17
129	Possibility for the electrical activation of the carbon antisite by hydrogen inSiC. Physical Review B, 2005, 71, .	3.2	9
130	EPR and theoretical studies of negatively charged carbon vacancy in4Hâ^'SiC. Physical Review B, 2005, 71,	3.2	55
131	Hyperfine Interaction of Nitrogen Donor in 4H-SiC Studied by Pulsed-ENDOR. Materials Science Forum, 2005, 483-485, 351-354.	0.3	2
132	Diffusion of hydrogen in perfect,p-type doped, and radiation-damaged4Hâ^'SiC. Physical Review B, 2004, 69, .	3.2	18
133	Annealing behavior of the carbon vacancy in electron-irradiated 4H-SiC. Journal of Applied Physics, 2004, 96, 2406-2408.	2.5	42
134	Hyperfine interaction of the nitrogen donor in4Hâ^'SiC. Physical Review B, 2004, 70, .	3.2	12
135	Annealing Behaviour of Vacancy-and Antisite-Related Defects in Electron-Irradiated 4H-SiC. Materials Science Forum, 2004, 457-460, 473-476.	0.3	9
136	Antisites as Possible Origin of Irradiation Induced Photoluminescence Centers in SiC: A Theoretical Study on Clusters of Antisites and Carbon Interstitials in 4H-SiC. Materials Science Forum, 2004, 457-460, 443-448.	0.3	1
137	EPR and theoretical studies of positively charged carbon vacancy in 4H-SiC. Physical Review B, 2004, 70,	3.2	50
138	Defects in High-Purity Semi-Insulating SiC. Materials Science Forum, 2004, 457-460, 437-442.	0.3	57
139	Electronic Structure of Deep Defects in SiC. Advanced Texts in Physics, 2004, , 461-492.	0.5	7
140	Cyclotron Resonance Studies of Effective Masses and Band Structure in SiC. Advanced Texts in Physics, 2004, , 437-460.	0.5	7
141	Defects in SiC. Physica B: Condensed Matter, 2003, 340-342, 15-24.	2.7	22
142	Anti-site pair in SiC: a model of the DI center. Physica B: Condensed Matter, 2003, 340-342, 175-179.	2.7	7
143	HTCVD Grown Semi-Insulating SiC Substrates. Materials Science Forum, 2003, 433-436, 33-38.	0.3	52
144	Correlation between the antisite pair and the DIcenter in SiC. Physical Review B, 2003, 67, .	3.2	72

#	Article	IF	CITATIONS
145	Hydrogen passivation of nitrogen in SiC. Applied Physics Letters, 2003, 83, 1385-1387.	3.3	16
146	Defects in Semi-Insulating SiC Substrates. Materials Science Forum, 2003, 433-436, 45-50.	0.3	30
147	Calculation of Hyperfine Constants of Defects in 4H-SiC. Materials Science Forum, 2003, 433-436, 511-514.	0.3	18
148	Electrically active defects inn-type 4H–silicon carbide grown in a vertical hot-wall reactor. Journal of Applied Physics, 2003, 93, 4708-4714.	2.5	169
149	Silicon vacancy relatedTV2acenter in 4H-SiC. Physical Review B, 2003, 68, .	3.2	17
150	Aggregation of carbon interstitials in silicon carbide: A theoretical study. Physical Review B, 2003, 68,	3.2	103
151	Metastable defects in 6H–SiC: experiments and modeling. Journal of Applied Physics, 2002, 91, 1324-1330.	2.5	19
152	Photoexcitation-electron-paramagnetic-resonance studies of the carbon vacancy in 4H-SiC. Applied Physics Letters, 2002, 81, 3945-3947.	3.3	70
153	Hole effective masses in 6H-SiC from optically detected cyclotron resonance. Physical Review B, 2002, 66, .	3.2	13
154	Ligand hyperfine interaction at the neutral silicon vacancy in 4H- and 6Hâ^'SiC. Physical Review B, 2002, 66, .	3.2	43
155	Hole and Electron Effective Masses in 6H-SiC Studied by Optically Detected Cyclotron Resonance. Materials Science Forum, 2002, 389-393, 525-528.	0.3	2
156	Impurity-Controlled Dopant Activation - The Role of Hydrogen in p-Type Doping of SiC. Materials Science Forum, 2002, 389-393, 561-564.	0.3	5
157	The Neutral Silicon Vacancy in SiC: Ligand Hyperfine Interaction. Materials Science Forum, 2002, 389-393, 501-504.	0.3	8
158	Theoretical Investigation of an Intrinsic Defect in SiC. Materials Science Forum, 2002, 389-393, 477-480.	0.3	8
159	Ab initiodensity-functional supercell calculations of hydrogen defects in cubic SiC. Physical Review B, 2001, 63, .	3.2	109
160	Silicon Antisite in4HSiC. Physical Review Letters, 2001, 87, 045502.	7.8	35
161	Passivation of p-type dopants in 4H-SiC by hydrogen. Physica B: Condensed Matter, 2001, 308-310, 722-725.	2.7	14
162	As-Grown and Process-Induced Intrinsic Deep-Level Luminescence in 4H-SiC. Materials Science Forum, 2001, 353-356, 365-368.	0.3	6

#	Article	IF	Citations
163	Boron Centers in 4H-SiC. Materials Science Forum, 2001, 353-356, 455-458.	0.3	24
164	Carbon vacancy-related defect in 4Hand 6HSiC. Physical Review B, 2001, 63, .	3.2	98
165	Impurity-controlled dopant activation: Hydrogen-determined site selection of boron in silicon carbide. Applied Physics Letters, 2001, 79, 2746-2748.	3.3	27
166	Intrinsic Defects in Silicon Carbide Polytypes. Materials Science Forum, 2001, 353-356, 499-504.	0.3	41
167	The Carbon Vacancy Pair in 4H and 6H SiC. Materials Science Forum, 2000, 338-342, 821-824.	0.3	6
168	Fast SiC Epitaxial Growth in a Chimney CVD Reactor and HTCVD Crystal Growth Developments. Materials Science Forum, 2000, 338-342, 131-136.	0.3	33
169	Silicon vacancy related defect in 4H and 6H SiC. Physical Review B, 2000, 61, 2613-2620.	3.2	223
170	Optically detected cyclotron resonance investigations on 4H and 6HSiC: Band-structure and transport properties. Physical Review B, 2000, 61, 4844-4849.	3.2	26
171	Hole effective masses in4Hâ€,SiC. Physical Review B, 2000, 61, R10544-R10546.	3.2	41
172	Bandstructure and Transport Properties of 4H- and 6H-SiC: Optically Detected Cyclotron Resonance Investigations. Materials Science Forum, 2000, 338-342, 559-562.	0.3	1
173	Vacancies and their Complexes with H in SiC. Materials Science Forum, 2000, 338-342, 817-820.	0.3	7
174	Vanadium-related Center in 4H Silicon Carbide. Materials Science Forum, 2000, 338-342, 631-634.	0.3	7
175	Hole Effective Masses in 4H SiC Determined by Optically Detected Cyclotron Resonance. Materials Science Forum, 2000, 338-342, 563-566.	0.3	0
176	Deep-level luminescence at 1.0 eV in 6H SiC. Materials Research Society Symposia Proceedings, 2000, 640, 1.	0.1	4
177	Overcoordinated Hydrogens in the Carbon Vacancy: Donor Centers of SiC. Physical Review Letters, 2000, 84, 4926-4929.	7.8	39
178	Configuration transformation of metastable defects in 6H-SiC. Semiconductor Science and Technology, 1999, 14, 251-256.	2.0	6
179	Photoluminescence and Zeeman effect in chromium-doped 4H and 6H SiC. Journal of Applied Physics, 1999, 86, 4348-4353.	2.5	36
180	Electron-paramagnetic-resonance studies of defects in electron-irradiated p-type 4H and 6H SiC. Physica B: Condensed Matter, 1999, 273-274, 655-658.	2.7	8

#	Article	IF	Citations
181	Carbon-vacancy related defects in 4H- and 6H-SiC. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 61-62, 202-206.	3.5	28
182	Liquid phase epitaxial growth of SiC. Journal of Crystal Growth, 1999, 197, 147-154.	1.5	65
183	Observation of negative-U centers in 6H silicon carbide. Applied Physics Letters, 1999, 74, 839-841.	3.3	35
184	Optically detected magnetic resonance studies of intrinsic defects in 6H-SiC. Semiconductor Science and Technology, 1999, 14, 1141-1146.	2.0	30
185	A Complex Defect Related to the Carbon Vacancy in 4H and 6H SiC. Physica Scripta, 1999, T79, 46.	2.5	9
186	Negative-Ucenters in 4Hsilicon carbide. Physical Review B, 1998, 58, R10119-R10122.	3.2	143
187	Optically Detected Magnetic Resonance Studies of Non-Radiative Recombination Centres in 6H SiC. Materials Science Forum, 1998, 264-268, 599-602.	0.3	6
188	CVD Growth and Characterisation of SiC Epitaxial Layers on Faces Perpendicular to the (0001) Basal Plane. Materials Science Forum, 1998, 264-268, 123-126.	0.3	17
189	Observation of Metastable Defect in Electron Irradiated 6H-SiC. Materials Science Forum, 1998, 264-268, 561-564.	0.3	6
190	The Neutral Silicon Vacancy in 6H and 4H SiC. Materials Science Forum, 1998, 264-268, 473-476.	0.3	14
191	Capture cross sections of electron irradiation induced defects in 6H–SiC. Journal of Applied Physics, 1998, 84, 704-708.	2.5	53
192	Chromium in 4H and 6H SiC: Photoluminescence and Zeeman Studies. Materials Science Forum, 1998, 264-268, 603-606.	0.3	11
193	Deep level defects in electron-irradiated 4H SiC epitaxial layers. Journal of Applied Physics, 1997, 81, 6155-6159.	2.5	279
194	Effects of microwave fields on recombination processes in 4H and 6H SiC. Journal of Applied Physics, 1997, 81, 1929-1932.	2.5	4
195	A Deep Photoluminescence Band in 4H SiC Related to the Silicon Vacancy. Materials Science Forum, 1997, 258-263, 685-690.	0.3	5
196	Optically detected magnetic resonance studies of defects in electron-irradiated 3C SiC layers. Physical Review B, 1997, 55, 2863-2866.	3.2	38
197	Optically detected magnetic resonance studies of defects in 3C SiC epitaxial layers. Diamond and Related Materials, 1997, 6, 1381-1384.	3.9	3
198	Deep luminescent centres in electron-irradiated 6H SiC. Diamond and Related Materials, 1997, 6, 1378-1380.	3.9	9

#	Article	IF	CITATIONS
199	Capacitance transient studies of electron irradiated 4H-SiC. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 46, 336-339.	3.5	15
200	Growth of SiC by ?Hot-Wall? CVD and HTCVD. Physica Status Solidi (B): Basic Research, 1997, 202, 321-334.	1.5	121
201	Effective Masses in SiC Determined by Cyclotron Resonance Experiments. Physica Status Solidi A, 1997, 162, 79-93.	1.7	23
202	Growth of SiC by "Hot-Wall―CVD and HTCVD. , 1997, 202, 321.		1
203	Effective Masses in SiC Determined by Cyclotron Resonance Experiments. Physica Status Solidi A, 1997, 162, 79.	1.7	1
204	Determination of the electron effective-mass tensor in 4HSiC. Physical Review B, 1996, 53, 15409-15412.	3.2	77
205	Dominant recombination center in electronâ€irradiated 3CSiC. Journal of Applied Physics, 1996, 79, 3784-3786.	2.5	30
206	Shallow excited states of deep luminescent centers in silicon. Solid State Communications, 1995, 93, 415-418.	1.9	7
207	Efficient excitation transfer in silicon studied by Fourier transform photoluminescence excitation spectroscopy. Applied Physics Letters, 1995, 66, 1498-1500.	3.3	1
208	High quality 4Hâ€SiC epitaxial layers grown by chemical vapor deposition. Applied Physics Letters, 1995, 66, 1373-1375.	3.3	50
209	Electron effective masses in 4H SiC. Applied Physics Letters, 1995, 66, 1074-1076.	3.3	109
210	Possible lifetimeâ€limiting defect in 6H SiC. Applied Physics Letters, 1994, 65, 2687-2689.	3.3	27
211	Electronic structure of a photoluminescent center in silver-doped silicon. Physical Review B, 1994, 49, 17428-17431.	3.2	15
212	Ligand ENDOR on substitutional manganese in GaAs. Physical Review B, 1994, 49, 10999-11004.	3.2	7
213	Electron effective masses and mobilities in highâ∈purity 6Hâ∈"SiC chemical vapor deposition layers. Applied Physics Letters, 1994, 65, 3209-3211.	3.3	80
214	CVD-Growth of Low-Doped 6H SIC Epitaxial Films. Materials Research Society Symposia Proceedings, 1994, 339, 405.	0.1	9
215	SiC – a semiconductor for high-power, high-temperature and high-frequency devices. Physica Scripta, 1994, T54, 283-290.	2.5	28
216	Magnetic resonance spectroscopy in silverâ€doped silicon. Journal of Applied Physics, 1993, 73, 1797-1801.	2.5	13

#	Article	IF	CITATIONS
217	Paramagnetic state of the isolated gold impurity in silicon. Physical Review Letters, 1992, 69, 3185-3188.	7.8	19
218	Electron-paramagnetic-resonance identification of silver centers in silicon. Physical Review B, 1992, 46, 4544-4550.	3.2	27
219	Electron paramagnetic resonance of FeFeAl complexes in silicon. Solid State Communications, 1992, 81, 955-959.	1.9	3
220	Nuclear interactions of defects in semiconductors â€" magnetic resonance measurements. Nuclear Instruments & Methods in Physics Research B, 1992, 63, 154-162.	1.4	4
221	Electron paramagnetic resonance of nickel in silicon â€" II. hyperfine and quadrupole interactions. Solid State Communications, 1991, 80, 439-445.	1.9	13
222	Electron paramagnetic resonance of nickel in silicon. â€" I. Identification of spectrum. Solid State Communications, 1990, 73, 393-398.	1.9	18
223	The Electronic Structure of Platinum, Palladium and Nickel in Silicon. Materials Science Forum, 1989, 38-41, 355-360.	0.3	11
224	Deep Levels Responsible for Semi-Insulating Behavior in Vanadium-Doped 4H-SiC Substrates. Materials Science Forum, 0, 600-603, 401-404.	0.3	1
225	The Silicon Vacancy in SiC. Materials Science Forum, 0, 615-617, 347-352.	0.3	7
226	Theory of Neutral Divacancy in SiC: A Defect for Spintronics. Materials Science Forum, 0, 645-648, 395-397.	0.3	31
227	Identification of Niobium in 4H-SiC by EPR and <i>Ab Initio</i> Studies. Materials Science Forum, 0, 717-720, 217-220.	0.3	3
228	Optical Properties of the Niobium Centre in 4H, 6H, and 15R SiC. Materials Science Forum, 0, 740-742, 405-408.	0.3	1
229	Silicon and Oxygen in High-Al-Content AlGaN: Incorporation Kinetics and Electron Paramagnetic Resonance Study. Solid State Phenomena, 0, 205-206, 441-445.	0.3	3
230	High-Resolution Raman and Luminescence Spectroscopy of Isotope-Pure ²⁸ Si ¹² C, Natural and ¹³ C – Enriched 4H-SiC. Materials Science Forum, 0, 778-780, 471-474.	0.3	12
231	Identification of the Negative Carbon Vacancy at Quasi-Cubic Site in 4H-SiC by EPR and Theoretical Calculations. Materials Science Forum, 0, 778-780, 285-288.	0.3	0
232	<i>Ab Initio</i> Theory of Si-Vacancy Quantum Bits in 4H and 6H-SiC. Materials Science Forum, 0, 924, 895-900.	0.3	3