List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5655043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Progress in Polymer Science, 2020, 100, 101181.	24.7	146
2	High-frequency and intrinsically stretchable polymer diodes. Nature, 2021, 600, 246-252.	27.8	138
3	Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions. Chemistry of Materials, 2020, 32, 5700-5714.	6.7	87
4	Electrospun Composite Nanofiber Yarns Containing Oriented Graphene Nanoribbons. ACS Applied Materials & Interfaces, 2013, 5, 6225-6231.	8.0	83
5	High performance ambipolar organic field-effect transistors based on indigo derivatives. Journal of Materials Chemistry C, 2014, 2, 9311-9317.	5.5	80
6	Effect of Molecular Packing on Field-Effect Performance of Single Crystals of Thienyl-Substituted Pyrenes. Chemistry of Materials, 2008, 20, 4883-4890.	6.7	58
7	Correlation of mobility and molecular packing in organic transistors based on cycloalkyl naphthalene diimides. Journal of Materials Chemistry C, 2013, 1, 5395.	5.5	45
8	Ferromagnetic Anomaly Associated with the Antiferromagnetic Transitions in (Donor)[Ni(mnt)2]-Type Charge-Transfer Salts. Inorganic Chemistry, 2004, 43, 6075-6082.	4.0	44
9	An ultra-narrow bandgap derived from thienoisoindigo polymers: structural influence on reducing the bandgap and self-organization. Polymer Chemistry, 2016, 7, 1181-1190.	3.9	42
10	A Novel Polymeric Chemosensor: Dual Colorimetric Detection of Metal Ions Through Click Synthesis. Macromolecular Rapid Communications, 2011, 32, 1804-1808.	3.9	38
11	Microwaveâ€assisted TCNE/TCNQ addition to poly(thienyleneethynylene) derivative for construction of donor–acceptor chromophores. Journal of Polymer Science Part A, 2011, 49, 1013-1020.	2.3	36
12	Stabilization of organic field-effect transistors by tert-butyl groups in dibenzotetrathiafulvalene derivatives. Physical Chemistry Chemical Physics, 2011, 13, 14370.	2.8	36
13	Design and structure–property relationship of benzothienoisoindigo in organic field effect transistors. RSC Advances, 2015, 5, 61035-61043.	3.6	36
14	The impact of molecular planarity on electronic devices in thienoisoindigo-based organic semiconductors. Journal of Materials Chemistry C, 2014, 2, 10455-10467.	5.5	35
15	Functionalized NIRâ€II Semiconducting Polymer Nanoparticles for Singleâ€cell to Wholeâ€Organ Imaging of PSMAâ€Positive Prostate Cancer. Small, 2020, 16, e2001215.	10.0	34
16	Colorimetric sensing of cations and anions by clicked polystyrenes bearing side chain donor–acceptor chromophores. Polymer Chemistry, 2012, 3, 1996.	3.9	33
17	Ambipolar organic transistors based on isoindigo derivatives. Organic Electronics, 2016, 35, 95-100.	2.6	33
18	An iodine effect in ambipolar organic field-effect transistors based on indigo derivatives. Journal of Materials Chemistry C, 2015, 3, 8612-8617.	5.5	32

#	Article	IF	CITATIONS
19	Creation of persistent charge-transfer interactions in TCNQ polyester. Polymer Journal, 2011, 43, 364-369.	2.7	31
20	Nanosize effects of sulfonated carbon nanofiber fabrics for high capacity ion-exchanger. RSC Advances, 2012, 2, 3109.	3.6	29
21	A highly conducting organic metal derived from an organic-transistor material: benzothienobenzothiophene. Physical Chemistry Chemical Physics, 2013, 15, 17818.	2.8	27
22	N-Unsubstituted thienoisoindigos: preparation, molecular packing and ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2017, 5, 2509-2512.	5.5	25
23	Thiadiazole-fused Quinoxalineimide as an Electron-deficient Building Block for N-type Organic Semiconductors. Organic Letters, 2017, 19, 3275-3278.	4.6	25
24	Manganese dioxide nanowires on carbon nanofiber frameworks for efficient electrochemical device electrodes. RSC Advances, 2017, 7, 12351-12358.	3.6	21
25	Ionic Liquid-Based Electrolytes Containing Surface-Functionalized Inorganic Nanofibers for Quasisolid Lithium Batteries. ACS Omega, 2017, 2, 835-841.	3.5	19
26	Mesoporous Hydrated Graphene Nanoribbon Electrodes for Efficient Supercapacitors: Effect of Nanoribbon Dispersion on Pore Structure. Bulletin of the Chemical Society of Japan, 2020, 93, 1268-1274.	3.2	18
27	The first methyl antimony linked dimeric tetrathiafulvalene and tetraselenafulvalenes. Tetrahedron Letters, 2006, 47, 8937-8941.	1.4	17
28	Polyelectrolyte Composite Membranes Containing Electrospun Ion-Exchange Nanofibers: Effect of Nanofiber Surface Charges on Ionic Transport. Langmuir, 2018, 34, 13035-13040.	3.5	16
29	Tris-fused tetrathiafulvalenes (TTF): highly conducting single-component organics and metallic charge-transfer salt. Synthetic Metals, 2004, 141, 307-313.	3.9	15
30	Synthesis and Structures of Highly Conducting Charge-Transfer Salts of Selenium Containing TTM-TTP Derivatives. Bulletin of the Chemical Society of Japan, 2004, 77, 1449-1458.	3.2	15
31	Organic Transistors Based on Octamethylenetetrathiafulvalenes. Chemistry Letters, 2010, 39, 538-540.	1.3	15
32	Raman and optical investigations on charge localization in the one-dimensional organic conductors(TTMâ^'TTP)(I3)5/3and(TSMâ^'TTP)(I3)5/3. Physical Review B, 1999, 60, 4635-4645.	3.2	14
33	Inkjet Printing of Graphene Nanoribbons for Organic Field-Effect Transistors. Applied Physics Express, 2011, 4, 115101.	2.4	14
34	Triggered Structural Control of Dynamic Covalent Aromatic Polyamides: Effects of Thermal Reorganization Behavior in Solution and Solid States. Macromolecules, 2016, 49, 2153-2161.	4.8	14
35	p- and n-Channel Photothermoelectric Conversion Based on Ultralong Near-Infrared Wavelengths Absorbing Polymers. ACS Applied Polymer Materials, 2019, 1, 542-551.	4.4	14
36	Cyclohexylenedithio Annelated Bis-Fused TTF Donors and Their Conducting Salts. Chemistry Letters, 1997, 26, 649-650.	1.3	13

#	Article	IF	CITATIONS
37	Synthesis and Solution-processed Field Effect Transistors of Liquid Crystalline Oligothiophenes. Chemistry Letters, 2007, 36, 708-709.	1.3	13
38	Ion-conductive and mechanical properties of polyether/silica thin fiber composite electrolytes. Reactive and Functional Polymers, 2014, 81, 40-44.	4.1	13
39	Synthesis and Structures of Neutral Crystals and Charge-Transfer Salts of Selenium Containing TMET-TTP Derivatives. Bulletin of the Chemical Society of Japan, 2003, 76, 2091-2097.	3.2	11
40	Ambipolar organic field-effect transistors based on N-Unsubstituted thienoisoindigo derivatives. Dyes and Pigments, 2020, 180, 108418.	3.7	11
41	Novel Bis-fused ï€-Electron Donor Composed of Tetrathiafulvalene and Tetraselenafulvalene. Chemistry Letters, 2010, 39, 1093-1095.	1.3	10
42	Improved stability of organic field-effect transistor performance in oligothiophenes including β-isomers. Tetrahedron, 2012, 68, 2790-2798.	1.9	10
43	Influence of structure–property relationships of two structural isomers of thiophene-flanked diazaisoindigo on carrier-transport properties. RSC Advances, 2016, 6, 109434-109441.	3.6	10
44	Conducting Salts Composed of Selenium Analogues of TMET-TTP. Chemistry Letters, 1998, 27, 253-254.	1.3	9
45	Preparation of poly(Î ³ -benzyl-L-glutamate) nanofibers by electrospinning from isotropic and biphasic liquid crystal solutions. Polymer Journal, 2012, 44, 360-365.	2.7	9
46	Efficient Synthesis and Photosensitizer Performance of Nonplanar Organic Donor–Acceptor Molecules. Journal of Nanoscience and Nanotechnology, 2015, 15, 5856-5866.	0.9	9
47	Dimerization Effect on the Physical Properties in New One-Dimensional Organic Conductors: (ChTM-TTP)2AuBr2, (ChTM-TTP)2GaCl4, and (ChTM-TTP)ReO4. Bulletin of the Chemical Society of Japan, 2002, 75, 435-447.	3.2	8
48	Synthesis and properties of selenium containing TTM-TTP conductors. Synthetic Metals, 2003, 135-136, 627-628.	3.9	8
49	n-Type Organic Field-Effect Transistors Based on Bisthienoisatin Derivatives. ACS Applied Electronic Materials, 2019, 1, 764-771.	4.3	8
50	Strainâ€Promoted Double Azide Addition to Octadehydrodibenzo[12]annulene Derivatives. Helvetica Chimica Acta, 2019, 102, e1900016.	1.6	8
51	Preparation of Perfluorosulfonated Ionomer Nanofibers by Solution Blow Spinning. Membranes, 2021, 11, 389.	3.0	8
52	Anion Ordering and Optical Properties of the Quasi-One-Dimensional Organic Conductor (ChTM-TTP)2GaCl4. Journal of the Physical Society of Japan, 2002, 71, 3059-3064.	1.6	7
53	Enhanced performance of bottom-contact organic field-effect transistors with M(DMDCNQI)2 buffer layers. Physica B: Condensed Matter, 2010, 405, S378-S380.	2.7	7
54	Ambipolar Organic Field-Effect Transistors Based on Indigo Derivatives. Engineering Journal, 2015, 19, 61-74.	1.0	7

#	Article	IF	CITATIONS
55	Enhancing water flux through semipermeable polybenzimidazole membranes by adding surfactantâ€treated <scp>CNT</scp> s. Journal of Applied Polymer Science, 2018, 135, 45875.	2.6	6
56	Quinoxalineimide as a Novel Electron-accepting Building Block for Organic Optoelectronics. Chemistry Letters, 2015, 44, 1128-1130.	1.3	5
57	Fluorination and chlorination effects on quinoxalineimides as an electron-deficient building block for n-channel organic semiconductors. RSC Advances, 2019, 9, 10807-10813.	3.6	5
58	Effect of hydrogen–deuterium exchange in amide linkages on properties of electrospun polyamide nanofibers. Polymer, 2021, 229, 123994.	3.8	5
59	Development of the first methyl antimony bridged tetrachalcogenafulvalene systems. Journal of Low Temperature Physics, 2006, 142, 449-452.	1.4	4
60	Flat Resistivity in Î,-Phase Charge-Transfer Salts of Selenium-Containing TMET-TTP Derivatives. Bulletin of the Chemical Society of Japan, 2008, 81, 947-955.	3.2	4
61	Synthesis, Structures and Properties of Molecular Conductors Based on Bis-Fused Donors Composed of (Thio)Pyran-4-ylidene-1,3-dithiole and Tetraselenafulvalene. Crystals, 2012, 2, 1092-1107.	2.2	4
62	Highly Sensitive Local Surface Plasmon Resonance in Anisotropic Au Nanoparticles Deposited on Nanofibers. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	4
63	Development of β-linked quaterthiophene and tetrathiafulvalene dimers as new organic semiconductors. Physica B: Condensed Matter, 2010, 405, S373-S377.	2.7	3
64	Bulky Phenylalkyl Substitutions to Bisthienoisatins and Thienoisoindigos. Crystal Growth and Design, 2020, 20, 3293-3303.	3.0	3
65	An organic spin-ladder system, (BEDT-TTF)[Co(mnt)2]. Synthetic Metals, 2004, 145, 95-101.	3.9	2
66	Quinoidal bisthienoisatin based semiconductors: Synthesis, characterization, and carrier transport property. Nano Select, 2020, 1, 334-345.	3.7	2
67	Preparation and properties of cyclohexylenedithio substituted TTP donors. Synthetic Metals, 1999, 102, 1603-1604.	3.9	1
68	Ground states of one-dimensional organic conductors based on ChTM-TTP. Synthetic Metals, 2001, 120, 793-794.	3.9	1
69	New Strongly Correlated One-Dimensional Organic Semiconductor (ChTM-TTP)2Ag(CN)2. Bulletin of the Chemical Society of Japan, 2013, 86, 526-528.	3.2	1
70	Synthesis and Structures of Neutral Crystals and Charge-Transfer Salts of Selenium Containing TMET-TTP Derivatives ChemInform, 2004, 35, no.	0.0	0
71	Conducting properties of tris-fused tetrathiafulvalenes. European Physical Journal Special Topics, 2004, 114, 549-551.	0.2	0
72	The Origin of Low-Energy Gap Derived from Thienoisoindigo-Based Polymers. Journal of Fiber Science and Technology, 2016, 72, P-337-P-338.	0.0	0

#	Article	IF	CITATIONS
73	Direct Laser Writing of Graphene Nanoribbon Thin Films for Supercapacitor Electrodes. Electrochemistry, 2020, 88, 413-417.	1.4	0