
Halvor Solheim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5654036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): anatomy and cytochemical traits. American Journal of Botany, 2000, 87, 302-313.	1.7	210
2	Insight into tradeâ€off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytologist, 2012, 194, 1001-1013.	7.3	210
3	Pathogenicity of Four Blue-Stain Fungi Associated with Aggressive and Nonaggressive Bark Beetles. Phytopathology, 1998, 88, 39-44.	2.2	133
4	Species of Ophiostomataceae isolated from Picea abies infested by the bark beetle Ips typographic. Nordic Journal of Botany, 1986, 6, 199-207.	0.5	115
5	Fungal associates of five bark beetle species colonizing Norway spruce. Canadian Journal of Forest Research, 1996, 26, 2115-2122.	1.7	114
6	Methyl jasmonate and oxalic acid treatment of Norway spruce: anatomically based defense responses and increased resistance against fungal infection. Tree Physiology, 2008, 28, 29-35.	3.1	109
7	Transmission of Blue-Stain Fungi by Ips typographus (Coleoptera: Scolytidae) in Norway Spruce. Annals of the Entomological Society of America, 1990, 83, 712-716.	2.5	93
8	Induced Resistance to Pathogenic Fungi in Norway Spruce. Plant Physiology, 1999, 121, 565-570.	4.8	90
9	Ophiostomatoid fungi associated with the spruce bark beetle Ips typographus f. aponicus in Japan. Mycological Research, 1997, 101, 1215-1227.	2.5	89
10	Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activity. Tree Physiology, 2004, 24, 505-515.	3.1	88
11	Induced Terpene Accumulation in Norway Spruce Inhibits Bark Beetle Colonization in a Dose-Dependent Manner. PLoS ONE, 2011, 6, e26649.	2.5	80
12	The early stages of fungal invasion in Norway spruce infested by the bark beetle <i>Ips typographus</i> . Canadian Journal of Botany, 1992, 70, 1-5.	1.1	79
13	Pathogenicity of the blue-stain fungi <i>Leptographiumwingfieldii</i> and <i>Ophiostomaminus</i> to Scots pine: effect of tree pruning and inoculum density. Canadian Journal of Forest Research, 1993, 23, 1438-1443.	1.7	77
14	Inducible anatomical defense responses in Norway spruce stems and their possible role in induced resistance. Tree Physiology, 2003, 23, 191-197.	3.1	76
15	Temporal and Spatial Profiles of Chitinase Expression by Norway Spruce in Response to Bark Colonization by Heterobasidion annosum. Applied and Environmental Microbiology, 2004, 70, 3948-3953.	3.1	74
16	Multiplex Real-Time PCR for Monitoring Heterobasidion annosum Colonization in Norway Spruce Clones That Differ in Disease Resistance. Applied and Environmental Microbiology, 2003, 69, 4413-4420.	3.1	70
17	The influence of Ceratocystis polonica inoculation and methyl jasmonate application on terpene chemistry of Norway spruce, Picea abies. Phytochemistry, 2010, 71, 1332-1341.	2.9	70
18	Differential anatomical response of Norway spruce stem tissues to sterile and fungus infected inoculations. Trees - Structure and Function, 2004, 18, 1-9.	1.9	69

#	Article	IF	CITATIONS
19	Early stages of blue-stain fungus invasion of lodgepole pine sapwood following mountain pine beetle attack. Canadian Journal of Botany, 1995, 73, 70-74.	1.1	67
20	Growth and virulence of mountain pine beetle associated blue-stain fungi, <i>Ophiostoma clavigerum</i> and <i>Ophiostoma montium</i> . Canadian Journal of Botany, 1998, 76, 561-566.	1.1	67
21	The invasive ash dieback pathogen Hymenoscyphus pseudoalbidus exerts maximal infection pressure prior to the onset of host leaf senescence. Fungal Ecology, 2013, 6, 302-308.	1.6	61
22	Oxygen deficiency and spruce resin inhibition of growth of blue stain fungi associated with Ips typographus. Mycological Research, 1991, 95, 1387-1392.	2.5	58
23	Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus. New Phytologist, 2017, 213, 1405-1417.	7.3	58
24	Ascospores hyperphoretic on mites associated with Ips typographus. Mycological Research, 1989, 93, 513-517.	2.5	55
25	Substrate-specific transcription of the enigmatic GH61 family of the pathogenic white-rot fungus Heterobasidion irregulare during growth on lignocellulose. Applied Microbiology and Biotechnology, 2012, 95, 979-990.	3.6	49
26	Fungi associated with the spruce bark beetle <i>Ips typographus</i> in an endemic area in Norway. Scandinavian Journal of Forest Research, 1993, 8, 118-122.	1.4	48
27	Influence of Fungal Infection and Wounding on Contents and Enantiomeric Compositions of Monoterpenes in Phloem of Pinus sylvestris. Journal of Chemical Ecology, 2006, 32, 1779-1795.	1.8	46
28	Priming of inducible defenses protects Norway spruce against treeâ€killing bark beetles. Plant, Cell and Environment, 2020, 43, 420-430.	5.7	46
29	Comparison of chitosans with different molecular weights as possible wood preservatives. Journal of Wood Science, 2005, 51, 387-394.	1.9	42
30	Anatomical-based defense responses of Scots pine (Pinus sylvestris) stems to two fungal pathogens. Tree Physiology, 2006, 26, 159-167.	3.1	34
31	Two species in the Ceratocystis coerulescens complex from conifers in western North America. Canadian Journal of Botany, 1997, 75, 827-834.	1.1	33
32	Fungal Infection and Mechanical Wounding Induce Disease Resistance in Scots Pine. European Journal of Plant Pathology, 2000, 106, 537-541.	1.7	32
33	Screening of chitosan against wood-deteriorating fungi. Scandinavian Journal of Forest Research, 2004, 19, 4-13.	1.4	32
34	Comparison of quantitative real-time PCR, chitin and ergosterol assays for monitoring colonization of Trametes versicolor in birch wood. Holzforschung, 2005, 59, 568-573.	1.9	32
35	Antifungal effect of bark extracts from some European tree species. European Journal of Forest Research, 2008, 127, 387-393.	2.5	32
36	Genes associated with lignin degradation in the polyphagous white-rot pathogen Heterobasidion irregulare show substrate-specific regulation. Fungal Genetics and Biology, 2013, 56, 17-24.	2.1	32

#	Article	IF	CITATIONS
37	The expression pattern of the Picea glauca Defensin 1 promoter is maintained in Arabidopsis thaliana, indicating the conservation of signalling pathways between angiosperms and gymnosperms*. Journal of Experimental Botany, 2012, 63, 785-795.	4.8	31
38	Defence-related gene expression in bark and sapwood of Norway spruce in response to Heterobasidion parviporum and methyl jasmonate. Physiological and Molecular Plant Pathology, 2012, 77, 10-16.	2.5	30
39	Phylogeny of Asexual Fungi Associated with Bark and Ambrosia Beetles. Mycologia, 2001, 93, 991.	1.9	29
40	Mould growth on paints with different surface structures when applied on wooden claddings exposed outdoors. International Biodeterioration and Biodegradation, 2010, 64, 339-345.	3.9	29
41	Growth and virulence of mountain pine beetle associated blue-stain fungi, Ophiostoma clavigerum and Ophiostoma montium. Canadian Journal of Botany, 1998, 76, 561-566.	1.1	28
42	Changes in host chitinase isoforms in relation to wounding and colonization by Heterobasidion annosum: early and strong defense response in 33-year-old resistant Norway spruce clone. Tree Physiology, 2006, 26, 169-177.	3.1	28
43	Local and systemic changes in expression of resistance genes, nb-lrr genes and their putative microRNAs in norway spruce after wounding and inoculation with the pathogen ceratocystis polonica. BMC Plant Biology, 2012, 12, 105.	3.6	25
44	Taxonomic re-evaluation of Leptographium lundbergii based on DNA sequence comparisons and morphology. Mycological Research, 2005, 109, 1149-1161.	2.5	24
45	Spatial Patterns in Hyphal Growth and Substrate Exploitation within Norway Spruce Stems Colonized by the Pathogenic White-Rot Fungus <i>Heterobasidion parviporum</i> . Applied and Environmental Microbiology, 2009, 75, 4069-4078.	3.1	24
46	Etiology and Real-Time Polymerase Chain Reaction-Based Detection of Gremmeniella- and Phomopsis-Associated Disease in Norway Spruce Seedlings. Phytopathology, 2006, 96, 1305-1314.	2.2	23
47	Growth of four bark-beetle-associated blue-stain fungi in relation to the induced wound response in Norway spruce. Canadian Journal of Botany, 1997, 75, 618-625.	1.1	22
48	The Ophiostoma clavatum species complex: a newly defined group in the Ophiostomatales including three novel taxa. Antonie Van Leeuwenhoek, 2016, 109, 987-1018.	1.7	22
49	Growth and virulence of <i>Ceratocystis rufipenni</i> and three blue-stain fungi isolated from the Douglas-fir beetle. Canadian Journal of Botany, 1998, 76, 1763-1769.	1.1	22
50	Real-Time PCR-Based Monitoring of DNA Pools in the Tri-Trophic Interaction Between Norway Spruce, the Rust Thekopsora areolata, and an Opportunistic Ascomycetous Phomopsis sp Phytopathology, 2008, 98, 51-58.	2.2	21
51	Indications of heightened constitutive or primed host response affecting the lignin pathway transcripts and phenolics in mature Norway spruce clones. Tree Physiology, 2012, 32, 1137-1147.	3.1	20
52	Carbon Dioxide and Methane Formation in Norway Spruce Stems Infected by White-Rot Fungi. Forests, 2015, 6, 3304-3325.	2.1	20
53	Identification and analysis of differentially expressed Heterobasidion parviporum genes during natural colonization of Norway spruce stems. Fungal Genetics and Biology, 2008, 45, 498-513.	2.1	19
54	Storm-induced tree resistance and chemical differences in Norway spruce (Picea abies). Annals of Forest Science, 2011, 68, 657-665.	2.0	19

#	Article	IF	CITATIONS
55	Host resistance in defoliated pine: effects of single and mass inoculations using bark beetle-associated blue-stain fungi. Agricultural and Forest Entomology, 2001, 3, 211-216.	1.3	18
56	The Relationship between Fungal Diversity and Invasibility of a Foliar Niche—The Case of Ash Dieback. Journal of Fungi (Basel, Switzerland), 2020, 6, 150.	3.5	17
57	Variation in phloem resistance of Norway spruce clones and families to <i>Heterobasidion parviporum</i> and <i>Ceratocystis polonica</i> and its relationship to phenology and growth traits. Scandinavian Journal of Forest Research, 2015, 30, 103-111.	1.4	16
58	Interactions between soil pH, wood heavy metal content and fungal decay at Norway spruce stands. Applied Soil Ecology, 2016, 107, 237-243.	4.3	16
59	Transmission of Ophiostoma ips (Ophiostomatales: Ophiostomataceae) by Ips pini (Coleoptera:) Tj ETQq1 653-660.	1 0.784314 rgBT 2.5	/Overlock 1 15
60	The Pathogenic White-Rot Fungus <i>Heterobasidion parviporum</i> Responds to Spruce Xylem Defense by Enhanced Production of Oxalic Acid. Molecular Plant-Microbe Interactions, 2012, 25, 1450-1458.	2.6	15
61	Title is missing!. Plant Cell, Tissue and Organ Culture, 2000, 60, 221-228.	2.3	14
62	Propagule Pressure Build-Up by the Invasive Hymenoscyphus fraxineus Following Its Introduction to an Ash Forest Inhabited by the Native Hymenoscyphus albidus. Frontiers in Plant Science, 2018, 9, 1087.	3.6	14
63	Invasive forest pathogens in Europe: Cross-country variation in public awareness but consistency in policy acceptability. Ambio, 2019, 48, 1-12.	5.5	14
64	Seven new species of <i>Graphilbum</i> from conifers in Norway, Poland, and Russia. Mycologia, 2020, 112, 1240-1262.	1.9	13
65	Variation in Tree Size and Resistance to Ceratocystis polonica in a Monoclonal Stand of Picea abies. Scandinavian Journal of Forest Research, 2002, 17, 522-528.	1.4	12
66	Xylem defense wood of Norway spruce compromised by the pathogenic white-rot fungus Heterobasidion parviporum shows a prolonged period of selective decay. Planta, 2012, 236, 1125-1133.	3.2	12
67	Characterization of the ascomycetes Therrya fuckelii and T. pini fruiting on Scots pine branches in Nordic countries. Mycological Progress, 2013, 12, 37-44.	1.4	12
68	Two new Leptographium spp. reveal an emerging complex of hardwood-infecting species in the Ophiostomatales. Antonie Van Leeuwenhoek, 2017, 110, 1537-1553.	1.7	12
69	Four new Ophiostoma species associated with hardwood-infesting bark beetles in Norway and Poland. Fungal Biology, 2018, 122, 1142-1158.	2.5	12
70	Differences between provenances of pinus contort a var. latifolia in resistance to attack by gremmeniella abietina. Scandinavian Journal of Forest Research, 1987, 2, 273-279.	1.4	11
71	Callus cultures and bark from Norway spruce clones show similar cellular features and relative resistance to fungal pathogens. Trees - Structure and Function, 2005, 19, 695-703.	1.9	11
72	Two new species of Leptographium from Dryocetes authographus and Hylastes cunicularius in Norway. Mycological Progress, 2010, 9, 69-78.	1.4	10

#	Article	IF	CITATIONS
73	Using laser micro-dissection and qRT-PCR to analyze cell type-specific gene expression in Norway spruce phloem. PeerJ, 2014, 2, e362.	2.0	10
74	Growth and virulence of Ceratocystis rufipenni and three blue-stain fungi isolated from the Douglas-fir beetle. Canadian Journal of Botany, 1998, 76, 1763-1769.	1.1	8
75	Three new Leptographium spp. (Ophiostomatales) infecting hardwood trees in Norway and Poland. Antonie Van Leeuwenhoek, 2018, 111, 2323-2347.	1.7	8
76	Is there a negative genetic correlation between initiation of embryogenic tissue and fungus susceptibility in Norway spruce?. Canadian Journal of Forest Research, 2001, 31, 824-831.	1.7	7
77	Migrational capacity of Fennoscandian populations of Venturia tremulae. Mycological Research, 2004, 108, 64-70.	2.5	7
78	Dieback of European Ash: What Can We Learn from the Microbial Community and Species-Specific Traits of Endophytic Fungi Associated with Ash?. Forestry Sciences, 2018, , 229-258.	0.4	7
79	The Native Hymenoscyphus albidus and the Invasive Hymenoscyphus fraxineus Are Similar in Their Necrotrophic Growth Phase in Ash Leaves. Frontiers in Microbiology, 2022, 13, .	3.5	6
80	The ability of some fungi to cause decay in the East African camphor tree, Ocotea usambarensis. Mycological Research, 2000, 104, 1473-1479.	2.5	5
81	In vitro effects of oxygen stress on fungi growing in wood of Ocotea usambarensis. Mycological Research, 2000, 104, 1480-1484.	2.5	5
82	Long-term effects of single-tree selection on the frequency and population structure of root and butt rot in uneven-sized Norway spruce stands. Forest Ecology and Management, 2018, 409, 509-517.	3.2	5
83	Two new species of Ophiostomatales (Sordariomycetes) associated with the bark beetle Dryocoetes alni from Poland. MycoKeys, 2020, 68, 23-48.	1.9	5
84	First Report of <i>Fusarium oxysporum</i> f. sp. <i>lactucae</i> Race 1 Causing Fusarium Wilt of Lettuce in Norway. Plant Disease, 2021, 105, 2239.	1.4	4
85	Secondary buds in Scots pine trees infested with Gremmeniella abietina. Trees - Structure and Function, 2007, 21, 191-199.	1.9	3
86	Pathogenicity of <i>Ceratocystis resinifera</i> to Norway spruce. Forest Pathology, 2010, 40, 458-464.	1.1	3
87	Ceratocystiopsis spp. associated with pine- and spruce-infesting bark beetles in Norway. Mycological Progress, 2022, 21, .	1.4	3