
Daniele Passarella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/565214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of potent and selective HDAC6 inhibitors led to unexpected opening of a quinazoline ring. RSC Advances, 2022, 12, 11548-11556.	3.6	6
2	Synthesis and Investigation of the C-Quadruplex Binding Properties of Kynurenic Acid Derivatives with a Dihydroimidazoquinoline-3,5-dione Core. Molecules, 2022, 27, 2791.	3.8	1
3	Total Synthesis of (â^) annabidiol ₄ . European Journal of Organic Chemistry, 2022, 2022, .	2.4	6
4	Vincamine by synthesis and semi-synthesis. Phytochemistry Reviews, 2021, 20, 343-365.	6.5	6
5	Microtubule-targeting agents and neurodegeneration. Drug Discovery Today, 2021, 26, 604-615.	6.4	16
6	Design and Synthesis of New Withaferin A Inspired Hedgehog Pathway Inhibitors. Chemistry - A European Journal, 2021, 27, 8350-8357.	3.3	5
7	Promising Non-cytotoxic Monosubstituted Chalcones to Target Monoamine Oxidase-B. ACS Medicinal Chemistry Letters, 2021, 12, 1151-1158.	2.8	15
8	Brown Allylation: Application to the Synthesis of Natural Products. European Journal of Organic Chemistry, 2021, 2021, 3214-3222.	2.4	19
9	Stimulus-responsive liposomes for biomedical applications. Drug Discovery Today, 2021, 26, 1794-1824.	6.4	53
10	Self-Assembly Nanoparticles of Natural Bioactive Abietane Diterpenes. International Journal of Molecular Sciences, 2021, 22, 10210.	4.1	5
11	Convenient Preparation and Spectroscopic Characterization of 7R-Hydroxymatairesinol. Molecules, 2021, 26, 5838.	3.8	2
12	Design and Synthesis of Hsp90 Inhibitors with Bâ€Raf and PDHK1 Multiâ€Target Activity. ChemistryOpen, 2021, 10, 1177-1185.	1.9	5
13	Maytansinol Derivatives: Side Reactions as a Chance for New Tubulin Binders. Chemistry - A European Journal, 2021, 28, e202103520.	3.3	5
14	Cannabidiol as the Substrate in Acid-Catalyzed Intramolecular Cyclization. Journal of Natural Products, 2020, 83, 2894-2901.	3.0	43
15	Catalytic C3 aza-alkylation of indoles. Organic and Biomolecular Chemistry, 2020, 18, 6211-6235.	2.8	27
16	Embelin as Lead Compound for New Neuroserpin Polymerization Inhibitors. Life, 2020, 10, 111.	2.4	10
17	A small library of chalcones induce liver cancer cell death through Akt phosphorylation inhibition. Scientific Reports, 2020, 10, 11814.	3.3	7
18	Engineered Ferritin Nanoparticles for the Bioluminescence Tracking of Nanodrug Delivery in Cancer. Small, 2020, 16, e2001450.	10.0	30

#	Article	IF	CITATIONS
19	Total Synthesis of (–)-Anaferine: A Further Ramification in a Diversity-Oriented Approach. Molecules, 2020, 25, 1057.	3.8	5
20	New Class of Betulinic Acid-Based Nanoassemblies of Cabazitaxel, Podophyllotoxin, and Thiocolchicine. ACS Medicinal Chemistry Letters, 2020, 11, 895-898.	2.8	11
21	Synthesis, Antiproliferative Effect, and Topoisomerase II Inhibitory Activity of 3-Methyl-2-phenyl-1 <i>H</i> -indoles. ACS Medicinal Chemistry Letters, 2020, 11, 691-697.	2.8	15
22	Nanolipid-Trehalose Conjugates and Nano-Assemblies as Putative Autophagy Inducers. Pharmaceutics, 2019, 11, 422.	4.5	14
23	Stereodivergent Diversityâ€Oriented Synthesis: Exploiting the Versatility of 2â€Piperidine Ethanol. European Journal of Organic Chemistry, 2019, 2019, 4013-4019.	2.4	5
24	Chalcones and Chalcone-mimetic Derivatives as Notch Inhibitors in a Model of T-cell Acute Lymphoblastic Leukemia. ACS Medicinal Chemistry Letters, 2019, 10, 639-643.	2.8	23
25	Synthesis of Thicolchicineâ€Based Conjugates: Investigation towards Bivalent Tubulin/Microtubules Binders. ChemPlusChem, 2019, 84, 98-102.	2.8	9
26	Self-assembling Releasable Thiocolchicine–Diphenylbutenylaniline Conjugates. ACS Medicinal Chemistry Letters, 2019, 10, 611-614.	2.8	8
27	Imidazo[2,1- <i>b</i>]benzothiazol Derivatives as Potential Allosteric Inhibitors of the Glucocorticoid Receptor. ACS Medicinal Chemistry Letters, 2018, 9, 339-344.	2.8	4
28	Heteronanoparticles by Self-Assembly of Ecdysteroid and Doxorubicin Conjugates To Overcome Cancer Resistance. ACS Medicinal Chemistry Letters, 2018, 9, 468-471.	2.8	14
29	Stereochemistry and complete ¹ H and ¹³ C NMR signal assignment of Câ€20â€oxime derivatives of posterone 2,3â€acetonide in solution state. Magnetic Resonance in Chemistry, 2018, 56, 859-866.	1.9	11
30	Self-assembled 4-(1,2-diphenylbut-1-en-1-yl)aniline based nanoparticles: podophyllotoxin and aloin as building blocks. Organic and Biomolecular Chemistry, 2017, 15, 1106-1109.	2.8	15
31	Correction: Self-assembled 4-(1,2-diphenylbut-1-en-1-yl)aniline based nanoparticles: podophyllotoxin and aloin as building blocks. Organic and Biomolecular Chemistry, 2017, 15, 1725-1725.	2.8	0
32	Novel chemical probes for the investigation of nonribosomal peptide assembly. Chemical Communications, 2017, 53, 7088-7091.	4.1	12
33	Heteronanoparticles by self-Assembly of Doxorubicin and Cyclopamine Conjugates. ACS Medicinal Chemistry Letters, 2017, 8, 953-957.	2.8	15
34	The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discovery Today, 2017, 22, 1572-1581.	6.4	464
35	Probing an Allosteric Pocket of CDK2 with Small Molecules. ChemMedChem, 2017, 12, 33-41.	3.2	21
36	Synthesis and Biological Evaluation of Migrastatin Macrotriazoles. European Journal of Organic Chemistry, 2017, 2017, 60-69.	2.4	11

#	Article	IF	CITATIONS
37	Microtubule-Directed Therapeutic Strategy for Neurodegenerative Disorders: Starting From the Basis and Looking on the Emergences. Current Pharmaceutical Design, 2017, 23, 784-808.	1.9	9
38	Enzymatic Kinetic Resolution of 2-Piperidineethanol for the Enantioselective Targeted and Diversity Oriented Synthesis. International Journal of Molecular Sciences, 2016, 17, 17.	4.1	31
39	Synthesis of Pironetin–Dumetorine Hybrids as Tubulin Binders. European Journal of Organic Chemistry, 2016, 2016, 2029-2036.	2.4	14
40	Histone demethylating agents as potential <i>S</i> -adenosyl- <scp>l</scp> -methionine-competitors. MedChemComm, 2016, 7, 1245-1255.	3.4	5
41	Bruno Danieli (1939–2014). Fìtoterapìâ, 2016, 109, 293-294.	2.2	Ο
42	4-(1,2-diarylbut-1-en-1-yl)isobutyranilide derivatives as inhibitors of topoisomerase II. European Journal of Medicinal Chemistry, 2016, 118, 79-89.	5.5	24
43	Tools for the rational design of bivalent microtubule-targeting drugs. Biochemical and Biophysical Research Communications, 2016, 479, 48-53.	2.1	10
44	Self-assembly drug conjugates for anticancer treatment. Drug Discovery Today, 2016, 21, 1321-1329.	6.4	45
45	Chalcone Derivatives Activate and Desensitize the Transient Receptor Potential Ankyrin 1 Cation Channel, Subfamily A, Member 1 TRPA1 Ion Channel: Structure-Activity Relationships in vitro and Anti-Nociceptive and Anti-inflammatory Activity in vivo. CNS and Neurological Disorders - Drug Targets, 2016, 15, 987-994.	1.4	14
46	Click Reaction as a Tool to Combine Pharmacophores: The Case of Vismodegib. ChemPlusChem, 2015, 80, 938-943.	2.8	19
47	Cyclopamine–Paclitaxel ontaining Nanoparticles: Internalization in Cells Detected by Confocal and Superâ€Resolution Microscopy. ChemPlusChem, 2015, 80, 1380-1383.	2.8	16
48	Synthesis of Silodosin by Copper atalysed C–C Arylation. European Journal of Organic Chemistry, 2015, 2015, 6011-6016.	2.4	2
49	Antiproliferative activity of yatein isolated fromAustrocedrus chilensisagainst murine myeloma cells: Cytological studies and chemical investigations. Pharmaceutical Biology, 2015, 53, 378-385.	2.9	14
50	Boehmeriasin A as new lead compound for the inhibition of topoisomerases and SIRT2. European Journal of Medicinal Chemistry, 2015, 92, 766-775.	5.5	32
51	Selfâ€Assembled Squaleneâ€based Fluorescent Heteronanoparticles. ChemPlusChem, 2015, 80, 47-49.	2.8	18
52	Natural Products and Cancer Stem Cells. Current Pharmaceutical Design, 2015, 21, 5547-5557.	1.9	19
53	Effect of chirality and lipophilicity in the functional activity of evodiamine and its analogues at <scp>TRPV1</scp> channels. British Journal of Pharmacology, 2014, 171, 2608-2620.	5.4	19
54	Can we use the epigenetic bioactivity of caloric restriction and phytochemicals to promote healthy ageing?. MedChemComm, 2014, 5, 1804-1820.	3.4	4

#	Article	IF	CITATIONS
55	New class of squalene-based releasable nanoassemblies of paclitaxel, podophyllotoxin, camptothecin and epothilone A. European Journal of Medicinal Chemistry, 2014, 85, 179-190.	5.5	34
56	Chemical approaches to targeting drug resistance in cancer stem cells. Drug Discovery Today, 2014, 19, 1547-1562.	6.4	90
57	Farinose alpine Primula species: Phytochemical and morphological investigations. Phytochemistry, 2014, 98, 151-159.	2.9	38
58	Microtubule Alterations Occur Early in Experimental Parkinsonism and The Microtubule Stabilizer Epothilone D Is Neuroprotective. Scientific Reports, 2013, 3, 1837.	3.3	103
59	Quinazolinecarboline alkaloid evodiamine as scaffold for targeting topoisomerase I and sirtuins. Bioorganic and Medicinal Chemistry, 2013, 21, 6920-6928.	3.0	26
60	Probing the Binding Site of Abl Tyrosine Kinase Using in Situ Click Chemistry. ACS Medicinal Chemistry Letters, 2013, 4, 274-277.	2.8	36
61	Synthesis and biological evaluation of novel tamoxifen analogues. Bioorganic and Medicinal Chemistry, 2013, 21, 4120-4131.	3.0	26
62	Preparation of Fluorescent Tubulin Binders. ChemPlusChem, 2013, 78, 202-202.	2.8	0
63	Preparation of Fluorescent Tubulin Binders. ChemPlusChem, 2013, 78, 222-226.	2.8	7
64	9â€Fluorenoneâ€2â€Carboxylic Acid as a Scaffold for Tubulin Interacting Compounds. ChemPlusChem, 2013, 78, 663-669.	2.8	7
65	Camptothecinâ€7â€ylâ€methanthiole: Semisynthesis and Biological Evaluation. ChemMedChem, 2012, 7, 2134-2143.	3.2	18
66	â€~Click' synthesis of a triazole-based inhibitor of Met functions in cancer cells. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4693-4696.	2.2	34
67	Combined Drug Action of 2-Phenylimidazo[2,1-b]Benzothiazole Derivatives on Cancer Cells According to Their Oncogenic Molecular Signatures. PLoS ONE, 2012, 7, e46738.	2.5	8
68	Chiral Flavanones from Amygdalus lycioides Spach: Structural Elucidation and Identification of TNFalpha Inhibitors by Bioactivity-guided Fractionation. Molecules, 2012, 17, 1665-1674.	3.8	29
69	Identification of new aminoacid amides containing the imidazo[2,1-b]benzothiazol-2-ylphenyl moiety as inhibitors of tumorigenesis by oncogenic Met signaling. European Journal of Medicinal Chemistry, 2012, 47, 239-254.	5.5	70
70	Tubulin-guided dynamic combinatorial library of thiocolchicine–podophyllotoxin conjugates. Tetrahedron, 2011, 67, 7354-7357.	1.9	22
71	Enantiopure 2-piperidylacetaldehyde as a useful building block in the diversity-oriented synthesis of polycyclic piperidine derivatives. Tetrahedron: Asymmetry, 2011, 22, 264-269.	1.8	16
72	<i>N</i> â€[2â€Methylâ€5â€(triazolâ€1â€yl)phenyl]pyrimidinâ€2â€amine as a Scaffold for the Synthesis of Inhib Bcrâ€Abl. ChemMedChem. 2011. 6. 2009-2018.	itors of	41

Bcrâ€Abl. ChemMedChem, 2011, 6, 2009-2018.

#	Article	IF	CITATIONS
73	Synthesis of (+)â€Dumetorine and Congeners by Using Flow Chemistry Technologies. Chemistry - A European Journal, 2011, 17, 6221-6226.	3.3	54
74	Synthesis and biological evaluation of imidazolo[2,1-b]benzothiazole derivatives, as potential p53 inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 1649-1657.	3.0	52
75	Synthesis and biological evaluation of new camptothecin derivatives obtained by modification of position 20. Bioorganic and Medicinal Chemistry, 2010, 18, 8660-8668.	3.0	25
76	Reaction of Grignard reagents with carbonyl compounds under continuous flow conditions. Tetrahedron, 2010, 66, 3242-3247.	1.9	81
77	New flavonol glycosides from Aconitum burnatii GÃįyer and Aconitum variegatum L Fìtoterapìâ, 2010, 81, 940-947.	2.2	17
78	Synthesis and biological evaluation of novel thiocolchicine–podophyllotoxin conjugates. European Journal of Medicinal Chemistry, 2010, 45, 219-226.	5.5	48
79	Exploiting enzymatic regioselectivity: a facile methodology for the synthesis of polyhydroxylated hybrid compounds. Organic and Biomolecular Chemistry, 2010, 8, 5583.	2.8	19
80	Synthesis and biological evaluation of epothilone A dimeric compounds. Bioorganic and Medicinal Chemistry, 2009, 17, 7435-7440.	3.0	13
81	Laccase-catalyzed coupling of catharanthine and vindoline: an efficient approach to the bisindole alkaloid anhydrovinblastine. Tetrahedron, 2009, 65, 312-317.	1.9	53
82	Enantiopure N-Boc piperidine-2-ethanol for the synthesis of (+)- and (â^')-dumetorine, and (+)- and (â^')-epidihydropinidine. Tetrahedron: Asymmetry, 2009, 20, 192-197.	1.8	14
83	Histone deacetylase and microtubules as targets for the synthesis of releasable conjugate compounds. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6358-6363.	2.2	21
84	Efficient Continuous Flow Synthesis of Hydroxamic Acids and Suberoylanilide Hydroxamic Acid Preparation. Journal of Organic Chemistry, 2009, 74, 3540-3543.	3.2	51
85	Stereocontrolled synthesis of enantiopure cis- and trans-3,4,4a,5,8,8a-hexahydro-1H-quinolin-2-ones. Tetrahedron: Asymmetry, 2008, 19, 2406-2410.	1.8	9
86	Synthesis and biological evaluation of pyrroloiminoquinone derivatives. Bioorganic and Medicinal Chemistry, 2008, 16, 2431-2438.	3.0	11
87	Inhibitors of tubulin polymerization: Synthesis and biological evaluation of hybrids of vindoline, anhydrovinblastine and vinorelbine with thiocolchicine, podophyllotoxin and baccatin III. Bioorganic and Medicinal Chemistry, 2008, 16, 6269-6285.	3.0	56
88	Studies on oxidation of ergot alkaloids: oxidation and desaturation of dihydrolysergol—stereochemical requirements. Tetrahedron, 2007, 63, 10466-10478.	1.9	8
89	Comparative phytochemical and morphological analyses of three Italian Primula species. Phytochemistry, 2007, 68, 1683-1691.	2.9	50
90	Thiocolchicineâ^'Podophyllotoxin Conjugates:Â Dynamic Libraries Based on Disulfide Exchange Reaction. Journal of Organic Chemistry, 2006, 71, 2848-2853.	3.2	61

#	Article	IF	CITATIONS
91	Nature-inspired indolyl-2-azabicyclo[2.2.2]oct-7-ene derivatives as promising agents for the attenuation of withdrawal symptoms: synthesis of 20-desethyl-20-hydroxymethyl-11-demethoxyibogaine. Natural Product Research, 2006, 20, 758-765.	1.8	2
92	Chiral Amino-Amides as Solution Phase and Immobilized Ligands for the Catalytic Asymmetric Alkylation of Aromatic Aldehydes. Letters in Organic Chemistry, 2006, 3, 430-436.	0.5	9
93	Microwave-Assisted, Solid-Phase Synthesis of a Chiral 1,2,3,4-Tetrahydroquinoline Library. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 691-701.	1.1	6
94	Chiral diamines for asymmetric synthesis: an efficient RCM construction of the ligand core of (â^')- and (+)-sparteine. Tetrahedron Letters, 2005, 46, 7121-7123.	1.4	26
95	Short enantioselective synthesis of sedridines, ethylnorlobelols and coniine via reagent-based differentiation. Tetrahedron: Asymmetry, 2005, 16, 2225-2229.	1.8	34
96	Combinatorial Solid-Phase Synthesis of 6-Hydroxy-1,2,3,4-tetrahydro-β-carbolines froml-5-Hydroxytryptophan. ACS Combinatorial Science, 2005, 7, 458-462.	3.3	13
97	Synthesis and Biological Evaluation of PaclitaxelThiocolchicine Hybrids. Chemistry and Biodiversity, 2004, 1, 327-345.	2.1	20
98	Enzyme assisted enantioselective synthesis of the alkaloid (+)-aloperine. Tetrahedron: Asymmetry, 2004, 15, 2921-2925.	1.8	43
99	Concise asymmetric synthesis of (â^)-halosaline and (2R,9aR)-(+)-2-hydroxy-quinolizidine by ruthenium-catalyzed ring-rearrangement metathesis. Tetrahedron, 2004, 60, 6437-6442.	1.9	27
100	Total Enantioselective Synthesis of (â^')-Cytisine. Organic Letters, 2004, 6, 493-496.	4.6	51
101	New Tetracyclic Colchicinoids from the Reaction of N-Deacetylthiocolchicine and N-Deacetylcolchicine with Nitrous Acid and tert-Butyl Nitrite. Helvetica Chimica Acta, 2003, 86, 2082-2089.	1.6	5
102	New Solution-Free and Polymer-Anchored Chiral Bispidine-Based Amino Alcohols. Synthesis and Screening for the Enantioselective Addition of Diethylzinc to Benzaldehyde ChemInform, 2003, 34, no.	0.0	0
103	New solution free and polymer anchored chiral bispidine-based amino alcohols. Synthesis and screening for the enantioselective addition of diethylzinc to benzaldehyde. Tetrahedron: Asymmetry, 2003, 14, 2453-2458.	1.8	25
104	Ibogaine analogues. Synthesis and preliminary pharmacological evaluation of 7-heteroaryl-2-azabicyclo[2.2.2]oct-7-enes. Bioorganic and Medicinal Chemistry, 2003, 11, 1007-1014.	3.0	21
105	Remote Stereocenter Discrimination in the Enzymatic Resolution of Piperidine-2-ethanol. Short Enantioselective Synthesis of Sedamine and Allosedamine. Journal of Organic Chemistry, 2003, 68, 9525-9527.	3.2	69
106	trans-6-Aminocyclohept-3-enols, a New Designed Polyfunctionalized Chiral Building Block for the Asymmetric Synthesis of 2-Substituted-4-hydroxypiperidines. Organic Letters, 2002, 4, 1817-1817.	4.6	0
107	Concise Total Synthesis of (±)-Aloperine and 6-epi-Aloperine. Organic Letters, 2002, 4, 2925-2928.	4.6	21
108	trans-6-Aminocyclohept-3-enols, a New Designed Polyfunctionalized Chiral Building Block for the Asymmetric Synthesis of 2-Substituted-4-hydroxypiperidines. Organic Letters, 2002, 4, 1367-1370.	4.6	21

#	Article	IF	CITATIONS
109	A Convenient Synthesis of Δ7,8-Morphinan-6-one and Its Direct Oxidation to 14-Hydroxy-Δ7,8-morphinan-6-one. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1981-1983.	2.2	3
110	Synthetic approach to imidazo[1,2-a]pyridine derivatives by the intramolecular nitrone cycloaddition methodology. Tetrahedron, 2002, 58, 4445-4450.	1.9	24
111	Synthesis of enantiopure diamine ligands related to sparteine, via scandium triflate-catalyzed imino Diels–Alder reactions. Tetrahedron Letters, 2002, 43, 7155-7158.	1.4	42
112	Cyclodimerization of indol-2-ylacetylenes. An example of intermolecular enyne–alkyne cycloaddition. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 127-129.	1.3	9
113	Stereocontrolled reduction of an oxazepinohexahydroindolo[2,3- a]quinolizine derivative: asymmetric total synthesis of (+)-tacamonine. Tetrahedron Letters, 2001, 42, 7237-7240.	1.4	9
114	An Efficient Enantioselective Entry to the Piperidino-Quinolizidine Ring System of Lupine Alkaloids by Means of N-Acyliminium Ion Initiated Cyclization Reactions. European Journal of Organic Chemistry, 2001, 2001, 1377-1383.	2.4	14
115	Double Michael Reaction of <i>N</i> -Carboethoxy-2,3-dihydropyridin-4-one. Synlett, 2001, 2001, 0132-0134.	1.8	8
116	Diastereoselective Diels–Alder Reaction of 5-(Indol-2-yl)-pyran-2-one. Tetrahedron, 2000, 56, 5205-5208.	1.9	7
117	Indole alkaloids by a chemoenzymatic approach: two convergent routes for the first enantioselective synthesis of (+)-20R-15,20-dihydrocleavamine. Tetrahedron Letters, 2000, 41, 3489-3492.	1.4	16
118	Access to Pyrrolo- and Pyrido[1,2-a]indole Derivatives by Intramolecular Nitrone Cycloadditions. Effect of Steric Factors on the Regioselective Product Formation. Journal of Organic Chemistry, 2000, 65, 8924-8932.	3.2	38
119	A Chemo-Enzymatic Approach to Some Indole and Quinolizidine Alkaloids From Cs -Symmetric Precursors. Current Organic Chemistry, 2000, 4, 231-261.	1.6	17
120	An efficient chemoenzymatic access to chiral 3,7-diazabicyclo[3.3.1]nonane derivatives. Tetrahedron, 1999, 55, 11871-11878.	1.9	12
121	Formal enantioselective synthesis of tacamonine starting from asymmetrized 2-substituted propane-1,3-diols. Tetrahedron: Asymmetry, 1999, 10, 4057-4064.	1.8	17
122	Biomimetic construction of the tetracyclic ring system of ngouniensine. Tetrahedron, 1999, 55, 14995-15000.	1.9	7
123	Convenient synthesis of methyl indol-2-ylpropiolate. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2669-2670.	0.9	19
124	Attempted Oxidative Deamination ofN-Deacetylcolchicinoids with 3,5-Di(tert-butyl)-1,2-benzoquinone: Synthesis of 2H-1,4-Benzoxazine-Type Adducts. Helvetica Chimica Acta, 1999, 82, 1502-1508.	1.6	4
125	Application of the Pd-catalyzed heteroarylation to the synthesis of 5-(indol-2′-yl)pyridin-2-one and 5-(indol-2′-yl)pyran-2-one. Tetrahedron, 1998, 54, 14081-14088.	1.9	46
126	Highly EnantiopureC1-Symmetriccis-Piperidine-3,5-dimethanol Monoacetates by Enzymatic Asymmetrization1. Journal of Organic Chemistry, 1998, 63, 3492-3496.	3.2	29

#	Article	IF	CITATIONS
127	Intramolecular Cycloadditions of Nitrones Derived from 1-Allyl-2-pyrrolecarbaldehyde as a Route to Racemic and Enantiopure Pyrrolizidines and Indolizidines. Journal of Organic Chemistry, 1998, 63, 9279-9284.	3.2	32
128	Vinblastine-Type Antitumor Alkaloids:Â A Method for Creating New C17 Modified Analogues. Journal of Organic Chemistry, 1998, 63, 8586-8588.	3.2	13
129	An Expeditious Synthesis of Dimethyl 1-Benzyl-cis-Piperidine-3,5-Dicarboxylate. Synthetic Communications, 1997, 27, 69-77.	2.1	8
130	Diastereoselective Synthesis of 3-Oxo-14,15-dihydroandranginine. Journal of Organic Chemistry, 1997, 62, 6519-6523.	3.2	15
131	Diels-Alder reactions of methyl N-p-methoxybenzensulfonylindole-2-(2-propenoate), a convenient dienophile towards the synthesis of andranginine. Tetrahedron, 1996, 52, 11291-11296.	1.9	9
132	Stereoselective enzymatic hydrolysis of dimethyl meso-piperidine-3,5-dicarboxylates. Tetrahedron: Asymmetry, 1996, 7, 345-348.	1.8	19
133	An enantioselective synthesis of the Strychnos alkaloid (â^')-tubifoline. Tetrahedron: Asymmetry, 1996, 7, 2775-2778.	1.8	30
134	Studies on the Synthesis of Strychnos Alkaloids. Natural Product Research, 1996, 8, 75-82.	0.4	3
135	Aspidosperma Alkaloids. Reaction of 3-Oxotabersonine with Nitrosonium Tetrafluoborate. Natural Product Research, 1995, 7, 141-146.	0.4	4
136	First Enantioselective Synthesis of (-)-Akagerine by a Chemoenzymic Approach. Journal of Organic Chemistry, 1995, 60, 2506-2513.	3.2	24
137	A Convenient Approach to the N-Substituted Amino Dienes, N-Benzyl-5-ethenyl-3,4-dihydropyridin-2-one and N-Cbz-5-Ethenyl-1,2,3,4-tetrahydropyridine. Heterocycles, 1995, 41, 973.	0.7	16
138	Aspidosperma alkaloids cyclization of secodine intermediate: Synthesis of (±)-3-oxovincadifformine ethyl ester Tetrahedron, 1994, 50, 6941-6954.	1.9	32
139	A highly enantioselective synthesis of (â^')-antirhine by chemo-enzymatic approach. Tetrahedron, 1994, 50, 8837-8852.	1.9	23
140	Functionalization at C-17 of an Eburnea-Aspidosperma Binary Alkaloid as a Model to Study Modified Vinblastine-type Antitumor Alkaloids. Journal of Organic Chemistry, 1994, 59, 5810-5813.	3.2	11
141	CHIRAL SYNTHONS VIA ENZYME-MEDIATED ASYMMETRIZATION OF MESO-COMPOUNDS. , 1993, , 143-219.		19
142	Hexacyclic indole alkaloids. A highly convergent total synthesis of cuanzine. Journal of Organic Chemistry, 1991, 56, 2380-2386.	3.2	20
143	Covalent Nucleoside Adducts of Aspidosperma Alkaloids. Nucleosides & Nucleotides, 1991, 10, 1667-1675.	0.5	1
144	An efficient chemo-enzymatic approach to (+)-meroquinene. Tetrahedron: Asymmetry, 1990, 1, 793-800.	1.8	17

#	Article	IF	CITATIONS
145	Synthetic studies on indole alxaloids. A stereocontrolled entry to the cuanzine structural unit. Tetrahedron, 1989, 45, 3583-3596.	1.9	14
146	An Efficient Merging of DBU/Enolate and DBU/Benzyl Bromide Organocycles for the Synthesis of alpha Benzylated1-Indanone Derivatives. New Journal of Chemistry, 0, , .	2.8	0