Seb J Savory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5651878/publications.pdf

Version: 2024-02-01

158	5,662	31	73
papers	citations	h-index	g-index
162	162	162	2617 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Digital filters for coherent optical receivers. Optics Express, 2008, 16, 804.	3.4	1,042
2	Digital Coherent Optical Receivers: Algorithms and Subsystems. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1164-1179.	2.9	636
3	Roadmap of optical communications. Journal of Optics (United Kingdom), 2016, 18, 063002.	2.2	402
4	Electronic compensation of chromatic dispersion using a digital coherent receiver. Optics Express, 2007, 15, 2120.	3.4	311
5	Blind Equalization and Carrier Phase Recovery in a 16-QAM Optical Coherent System. Journal of Lightwave Technology, 2009, 27, 3042-3049.	4.6	295
6	Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning. IEEE Photonics Technology Letters, 2010, 22, 631-633.	2.5	226
7	Compensation of Quadrature Imbalance in an Optical QPSK Coherent Receiver. IEEE Photonics Technology Letters, 2008, 20, 1733-1735.	2.5	225
8	Digital Signal Processing for Coherent Transceivers Employing Multilevel Formats. Journal of Lightwave Technology, 2017, 35, 1125-1141.	4. 6	173
9	Mitigation of Fiber Nonlinearity Using a Digital Coherent Receiver. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1217-1226.	2.9	112
10	Digital Coherent Receivers for Long-Reach Optical Access Networks. Journal of Lightwave Technology, 2013, 31, 609-620.	4. 6	106
11	Spectrally Shaped DP-16QAM Super-Channel Transmission with Multi-Channel Digital Back-Propagation. Scientific Reports, 2015, 5, 8214.	3.3	100
12	Blind Equalization of Receiver In-Phase/Quadrature Skew in the Presence of Nyquist Filtering. IEEE Photonics Technology Letters, 2013, 25, 2446-2449.	2. 5	73
13	Design of a 1 Tb/s Superchannel Coherent Receiver. Journal of Lightwave Technology, 2016, 34, 1453-1463.	4.6	70
14	Adapting Transmitter Power and Modulation Format to Improve Optical Network Performance Utilizing the Gaussian Noise Model of Nonlinear Impairments. Journal of Lightwave Technology, 2014, 32, 4087-4096.	4.6	65
15	A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver. Optics Express, 2010, 18, 25855.	3.4	61
16	Comparison of Low Complexity Coherent Receivers for UDWDM-PONs (\$lambda\$-to-the-User). Journal of Lightwave Technology, 2018, 36, 3453-3464.	4.6	52
17	Machine Learning Based Linear and Nonlinear Noise Estimation. Journal of Optical Communications and Networking, 2018, 10, D42.	4.8	51
18	Impact of Interchannel Nonlinearities on a Split-Step Intrachannel Nonlinear Equalizer. IEEE Photonics Technology Letters, 2010, 22, 673-675.	2.5	50

#	Article	IF	CITATIONS
19	Routing, modulation, spectrum and launch power assignment to maximize the traffic throughput of a nonlinear optical mesh network. Photonic Network Communications, 2015, 29, 244-256.	2.7	50
20	Widely Tunable Burst Mode Digital Coherent Receiver With Fast Reconfiguration Time for 112 Gb/s DP-QPSK WDM Networks. Journal of Lightwave Technology, 2012, 30, 3924-3930.	4.6	49
21	Optimal Least-Squares FIR Digital Filters for Compensation of Chromatic Dispersion in Digital Coherent Optical Receivers. Journal of Lightwave Technology, 2014, 32, 1449-1456.	4.6	45
22	Congestion Aware Routing in Nonlinear Elastic Optical Networks. IEEE Photonics Technology Letters, 2014, 26, 1057-1060.	2.5	45
23	Polarization-Insensitive Single-Balanced Photodiode Coherent Receiver for Long-Reach WDM-PONs. Journal of Lightwave Technology, 2016, 34, 2034-2041.	4.6	45
24	Blind adaptive equalization of †polarization-switched QPSK modulation. Optics Express, 2011, 19, 8533.	3.4	40
25	Generation and long-haul transmission of polarization-switched QPSK at 429 Gb/s. Optics Express, 2011, 19, 9296.	3.4	38
26	Compensation of Frequency Offset for 16-QAM Optical Coherent Systems using QPSK Partitioning. IEEE Photonics Technology Letters, 2011, , .	2.5	36
27	Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation. Optics Express, 2010, 18, 16273.	3.4	35
28	Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation. Scientific Reports, 2015, 5, 13990.	3.3	34
29	Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation. Optics Express, 2010, 18, 12939.	3.4	33
30	Burst Mode Receiver for 112 Gb/s DP-QPSK with parallel DSP. Optics Express, 2011, 19, B770.	3.4	33
31	Compensation of Frequency Offset for Differentially Encoded 16- and 64-QAM in the Presence of Laser Phase Noise. IEEE Photonics Technology Letters, 2010, 22, 176-178.	2.5	32
32	Reduced Complexity Equalization for Coherent Long-Reach Passive Optical Networks [Invited]. Journal of Optical Communications and Networking, 2015, 7, A16.	4.8	32
33	The Benefit of Split Nonlinearity Compensation for Single-Channel Optical Fiber Communications. IEEE Photonics Technology Letters, 2016, 28, 1803-1806.	2.5	31
34	Machine learning for optical fiber communication systems: An introduction and overview. APL Photonics, 2021, 6, .	5.7	29
35	Pulse-shaping versus digital backpropagation in 224Gbit/s PDM-16QAM transmission. Optics Express, 2011, 19, 12879.	3.4	28
36	Probabilistic Design of Optical Transmission Systems. Journal of Lightwave Technology, 2017, 35, 931-940.	4.6	27

#	Article	IF	CITATIONS
37	Digital backpropagation accounting for polarization-mode dispersion. Optics Express, 2017, 25, 1903.	3.4	27
38	Digital Equalisation of 40Gbit/s per Wavelength Transmission over 2480km of Standard Fibre without Optical Dispersion Compensation. , 2006, , .		26
39	Carrier Phase Recovery for 16-QAM Using QPSK Partitioning and Sliding Window Averaging. IEEE Photonics Technology Letters, 2014, 26, 854-857.	2.5	26
40	On the Impact of Optimal Modulation and FEC Overhead on Future Optical Networks. Journal of Lightwave Technology, 2016, 34, 2339-2352.	4.6	26
41	Bidirectional wavelength-division multiplexing transmission over installed fibre using a simplified optical coherent access transceiver. Nature Communications, 2017, 8, 1043.	12.8	26
42	Coherent Passive Optical Networks: Why, When, and How. IEEE Communications Magazine, 2021, 59, 112-117.	6.1	26
43	Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission. IEEE Photonics Technology Letters, 2010, 22, 1714-1716.	2.5	25
44	DSP algorithms for recovering single-carrier Alamouti coded signals for PON applications. Optics Express, 2016, 24, 24083.	3.4	25
45	Digital Signal Processing Options in Long Haul Transmission. , 2008, , .		24
46	Nonlinear Transmission Performance of Higher-Order Modulation Formats. IEEE Photonics Technology Letters, 2011, 23, 377-379.	2.5	23
47	Estimating OSNR of equalised QPSK signals. Optics Express, 2011, 19, B661.	3.4	23
48	Approximations for the Nonlinear Self-Channel Interference of Channels With Rectangular Spectra. IEEE Photonics Technology Letters, 2013, 25, 961-964.	2.5	23
49	Transmission of 42.8Gbit/s Polarization Multiplexed NRZ-QPSK over 6400km of Standard Fiber with no Optical Dispersion Compensation. , 2007, , .		19
50	Scalable Capacity Estimation for Nonlinear Elastic All-Optical Core Networks. Journal of Lightwave Technology, 2019, 37, 5380-5391.	4.6	19
51	Differential carrier phase recovery for QPSK optical coherent systems with integrated tunable lasers. Optics Express, 2013, 21, 10166.	3.4	18
52	Joint Estimation of Linear and Non-linear Signal-to-Noise Ratio based on Neural Networks. , 2018, , .		18
53	Bidirectional 10 Gbit/s long-reach WDM-PON using digital coherent receivers. , 2011, , .		17
54	Nonlinear Distortion in Transmission of Higher Order Modulation Formats. IEEE Photonics Technology Letters, 2010, 22, 1111-1113.	2.5	15

#	Article	IF	Citations
55	Network Equipment and Their Procurement Strategy for High Capacity Elastic Optical Networks. Journal of Optical Communications and Networking, 2016, 8, A201.	4.8	15
56	Maximizing the information throughput of ultra-wideband fiber-optic communication systems. Optics Express, 2022, 30, 19320.	3.4	15
57	Digital Signal Processing for Coherent Systems. , 2012, , .		14
58	Assessment of Options for Utilizing SNR Margin to Increase Network Data Throughput., 2015,,.		14
59	Long-Haul Transmission of PS-QPSK at 100 Gb/s Using Digital Backpropagation. IEEE Photonics Technology Letters, 2012, 24, 176-178.	2.5	13
60	Digital coherent optical access networks. , 2013, , .		13
61	Transmitter Optimized Optical Networks. , 2013, , .		13
62	Carrier-Phase Estimation for 16-QAM Optical Coherent Systems Using QPSK Partitioning With Barycenter Approximation. Journal of Lightwave Technology, 2014, 32, 2420-2427.	4.6	13
63	Modulatorâ€Free Coherentâ€Oneâ€Way Quantum Key Distribution. Laser and Photonics Reviews, 2017, 11, 1700067.	8.7	13
64	A comparison of modulation formats for passive optical networks. Optics Express, 2011, 19, B836.	3.4	12
65	80-km Coherent DWDM-PON on 20-GHz Grid With Injected Gain Switched Comb Source. IEEE Photonics Technology Letters, 2014, 26, 364-367.	2.5	12
66	Modified radius directed equaliser for high order QAM. , 2015, , .		12
67	Technology Requirements for an Alamouti-Coded 100 Gb/s Digital Coherent Receiver Using 3 \tilde{A} — 3 Couplers for Passive Optical Networks. IEEE Photonics Journal, 2018, 10, 1-13.	2.0	12
68	Estimating Outages Due to Polarization Mode Dispersion Using Extreme Value Statistics. Journal of Lightwave Technology, 2006, 24, 3907-3913.	4.6	11
69	Long-haul 10 Gbit/s linear and non-linear IMDD transmission over uncompensated standard fiber using a SQRT-metric MLSE receiver. Optics Express, 2008, 16, 12919.	3.4	11
70	Gain-switched multicarrier transmitter in a long-reach UDWDM PON with a digital coherent receiver. Optics Letters, 2013, 38, 4797.	3.3	11
71	Spectral Shaping for Mitigating Backreflections in a Bidirectional 10 Gbit/s Coherent WDM-PON. , 2013, , .		11
72	Design considerations for low-margin elastic optical networks in the nonlinear regime [Invited]. Journal of Optical Communications and Networking, 2019, 11, C76.	4.8	11

#	Article	IF	CITATIONS
73	Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems. Journal of Lightwave Technology, 2021, 39, 6833-6844.	4.6	11
74	Bidirectional Symmetrical 100 Gb/s/λ Coherent PON Using a Simplified ONU Transceiver. IEEE Photonics Technology Letters, 2022, 34, 838-841.	2.5	11
75	A direct GHz-clocked phase and intensity modulated transmitter applied to quantum key distribution. Quantum Science and Technology, 2018, 3, 045010.	5.8	10
76	Interaction between polarization mode dispersion and polarization-dependent losses in optical communication links. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 424.	2.1	9
77	Compensation of fibre impairments in digital coherent systems. , 2008, , .		9
78	Novel Method of Generating QAM-16 Signals at 21.3 Gbaud and Transmission Over 480 km. IEEE Photonics Technology Letters, 2010, 22, 36-38.	2.5	9
79	Reducing the Power Consumption of the CMA Equalizer Update for a Digital Coherent Receiver. , 2014, , .		9
80	Throughput Gains From Adaptive Transceivers in Nonlinear Elastic Optical Networks. Journal of Lightwave Technology, 2017, 35, 1280-1289.	4.6	9
81	Realizing High Sensitivity at 40 Gbit/s and 100 Gbit/s., 2012,,.		9
82	Compensation of fibre impairments in digital coherent systems. , 2008, , .		8
83	Introducing scenario based learning: Experiences from an undergraduate electronic and electrical engineering course. , 2010, , .		8
84	Digital Coherence Enhancement Enabling 6-GBd DP-64QAM Using a 1.4-MHz Linewidth Laser. IEEE Photonics Technology Letters, 2013, 25, 2213-2216.	2.5	8
85	Fast Wavelength Switching 6 GBd Dual Polarization 16QAM Digital Coherent Burst Mode Receiver. IEEE Photonics Technology Letters, 2014, 26, 297-300.	2.5	8
86	Experimental demonstration of multi-pilot aided carrier phase estimation for DP-64QAM and DP-256QAM. , 2015, , .		8
87	Approximating the Partially Coherent Additive White Gaussian Noise Channel in Polar Coordinates. IEEE Photonics Technology Letters, 2019, 31, 833-836.	2.5	8
88	Coherent Access: Status and Opportunities. , 2020, , .		8
89	Electronic signal processing in optical communications. , 2008, , .		7
90	Digital Coherent Technology for Long-Reach Optical Access. , 2014, , .		7

#	Article	IF	CITATIONS
91	Using 25  GbE Client Rates to Access the Gains of Adaptive Bit- and Code-Rate Networking. Journal of Optical Communications and Networking, 2016, 8, A86.	4.8	7
92	A Baud-Rate Sampled Coherent Transceiver with Digital Pulse Shaping and Interpolation. , 2013, , .		7
93	In-Band OSNR Monitoring Using Spectral Analysis After Frequency Down-Conversion. IEEE Photonics Technology Letters, 2007, 19, 115-117.	2.5	6
94	Polarization-insensitive single balanced photodiode coherent receiver for passive optical networks., 2015,,.		6
95	Manipulating photon coherence to enhance the security of distributed phase reference quantum key distribution. Applied Physics Letters, 2017, 111, .	3.3	6
96	Robust Single Polarization Coherent Transceiver Using DGD Pre-distortion for Optical Access Networks., 2016,,.		6
97	A Low Complexity Hybrid Time-Frequency Domain Adaptive Equalizer for Coherent Optical Receivers. , 2016, , .		6
98	Linear and nonlinear impairment mitigation in a Nyquist spaced DP-16QAM WDM transmission system with full-field DBP. , 2014, , .		5
99	Demonstration of 10 Gbit/s Colorless Coherent PON Incorporating Tunable DS-DBR Lasers and Low-Complexity Parallel DSP. , 2012, , .		5
100	Improved Linewidth Tolerant Carrier Phase Recovery Based on Polar MAP Metric Estimate., 2017,,.		5
101	Low Complexity Coherent for Access Networks. , 2020, , .		5
102	Burst Mode Receiver for 112 Gb/s DP-QPSK., 2011,,.		4
103	Fast Wavelength Switching 112Gb/s Coherent Burst Mode Transceiver for Dynamic Optical Networks. , 2012, , .		4
104	On Optimal Modulation and FEC Overhead for Future Optical Networks. , 2015, , .		4
105	Low Complexity Multichannel Nonlinear Predistortion for Passive Optical Networks., 2015,,.		4
106	Single Channel Probe Utilizing the EGN Model to Estimate Link Parameters for Network Abstraction. , 2017, , .		4
107	Parameter Optimisation for Ultra-Wideband Optical Networks in the Presence of Stimulated Raman Scattering Effect., 2021,,.		4
108	Estimating OSNR of Equalised QPSK Signals. , 2011, , .		4

#	Article	IF	CITATIONS
109	On the Impact of Backreflections in a Bidirectional 10 Gbit/s Coherent WDM-PON., 2012,,.		4
110	Disentangling the control electron in a two qubit solid state quantum gate. Journal of Physics Condensed Matter, 2006, 18, S777-S782.	1.8	3
111	Coherent Detection - Why is it back?. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	3
112	Experimental investigation of PDM-QAM16 transmission at 112 Gbit/s over 2400 km., 2010, , .		3
113	Fibre nonlinearities in WDM-systems with reduced channel-spacing and symbol-rate. , 2010, , .		3
114	Optimizing the FEC Overhead in a 100 GbE PDM-QPSK Digital Coherent Transmission System. Journal of Lightwave Technology, 2011, 29, 1118-1126.	4.6	3
115	Ultra-long-haul transmission of 7×429 Gbit/s PS-QPSK and PDM-BPSK. Optics Express, 2011, 19, B581.	3.4	3
116	SOA blanking and signal pre-emphasis for wavelength agile 100Gb/s transmitters. , 2012 , , .		3
117	Perturbation-Based Frequency Domain Linear and Nonlinear Noise Estimation. Journal of Lightwave Technology, 2022, 40, 6055-6063.	4.6	3
118	Distributed abstraction and verification of an installed optical fibre network. Scientific Reports, 2021, 11, 10750.	3.3	3
119	Transceiver Noise Characterization Based on Perturbations. Journal of Lightwave Technology, 2021, 39, 5799-5804.	4.6	3
120	Estimating Network Throughput with an Adaptive Routing and Wavelength Assignment Algorithm. , 2018, , .		3
121	Extreme Values in Optical Fiber Communication Systems. , 2020, , .		3
122	Long-haul WDM transmission of PDM-8PSK and PDM-8QAM with nonlinear DSP., 2012,,.		2
123	Nyquist-WDM-based system performance evaluation. , 2013, , .		2
124	Nyquist-WDM PDM-QPSK transmission over SMF-28 fibre using URFL amplification. , 2014, , .		2
125	Fast Wavelength Switching Transceiver for a Virtualized Coherent Optical Network. Journal of Lightwave Technology, 2015, 33, 1007-1013.	4.6	2
126	The benefit of split nonlinearity compensation for single channel optical fiber communications. , 2016, , .		2

#	Article	IF	CITATIONS
127	Comparison of Pulse Shapes in a 224Gbit/s (28Gbaud) PDM-QAM16 Long-Haul Transmission Experiment. , 2011, , .		2
128	How Pessimistic is a Worst-Case SNR Degradation as a Link Abstraction Metric?., 2016, , .		2
129	Digital Signal Processing for Coherent Optical Communication Systems. , 2013, , .		2
130	Single Technique for Simultaneous Monitoring of OSNR and Chromatic Dispersion at 40Gbit/s. , 2006, , .		1
131	Robust Long-Haul Transmission Utilizing Electronic Precompensation and MLSE Equalization. , 2007, , .		1
132	Benefits of digital backpropagation in coherent QPSK and 16QAM fibre links. Proceedings of SPIE, 2010,	0.8	1
133	DSP techniques for 16-QAM coherent optical systems. , 2010, , .		1
134	Editorial [New EIC S.J. Savory]. IEEE Photonics Technology Letters, 2012, 24, 331-331.	2.5	1
135	Machine Learning Based Noise Estimation in Optical Fiber Communication Networks. , 2018, , .		1
136	Ultra-long-haul transmission of $7\tilde{A}$ —42.9Gbit/s PS-QPSK and PM-BPSK. , $2011, , .$		1
137	Remote Abstraction of an Installed Dark Fiber Network using Noise to Signal Ratio. , 2018, , .		1
138	A Comparison of Modulation Formats for Passive Optical Networks. , 2011, , .		1
139	Impact of Amplifier Noise Figure on Network Throughput. , 2016, , .		1
140	A Pareto-Optimality Based Multi-Objective Optimisation Approach to Assist Optical Network (Re-)Design Choices. , 2021, , .		1
141	Recent Progress and Fundamental Limitations of Optical MLSE Receivers. , 2007, , .		O
142	Experimental characterisation of QAM16 at symbol rates up to 42Gbaud., 2010,,.		0
143	Nonlinear Digital Processing for Uncompensated Systems. , 2010, , .		0
144	Relationship between electrical bandwidth and FEC overhead in a 100GbE digital coherent transceiver. , 2010, , .		0

#	Article	IF	Citations
145	Fixed point precision requirements of the CMA for digital coherent access., 2012,,.		О
146	Editorial: Increasing the Page Limit to Permit Four-Page Letters. IEEE Photonics Technology Letters, 2012, 24, 719-720.	2.5	0
147	Fast wavelength switching transceivers for bandwidth on demand based coherent optical networks. , 2014, , .		0
148	Fast Wavelength Switching DP-OFDM Transceiver in a 5-Node 800km Coherent OBS Network. , 2014, , .		0
149	Estimating divergently routed nonlinearly interfering channel powers using cross phase modulation. Optics Express, 2014, 22, 25506.	3.4	0
150	Unrepeated transmission over 253.4 km ultra low loss fiber achieving 6.95 b/s/Hz SE using EDFA-only pre-amplification. , 2014, , .		0
151	Guest Editorial: OFC/NFOEC 2013 Special Issue. Journal of Lightwave Technology, 2014, 32, 525-527.	4.6	0
152	Designing adaptive coded modulation for optical networks via achievable information rates. , 2017, , .		0
153	Benefits of Digital Backpropagation in Coherent QPSK and 16QAM Fibre Links. , 2010, , .		0
154	Demonstration of 10 Gbit/s Colorless Coherent PON Incorporating Tunable DS-DBR Lasers and Low-Complexity Parallel DSP. , 2012, , .		0
155	Fast Switching Burst Mode Receiver in a 24-Channel 112Gb/s DP-QPSK WDM System with 240km Transmission. , 2012, , .		O
156	A Transition Metric in Polar Co-ordinates for MLSE of a Complex Modulated DML., 2020,,.		0
157	Amplifier Considerations in ROADM–free Space–Switched Nonlinear Optical Links. , 2020, , .		0
158	DSP for Optical Transponders. Springer Handbooks, 2020, , 155-176.	0.6	0