
Luca Valentini M Valentini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5651824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D Printing Silk-Based Bioresorbable Piezoelectric Self-Adhesive Holey Structures for <i>In Vivo</i> Monitoring on Soft Tissues. ACS Applied Materials & Interfaces, 2022, 14, 19253-19264.	8.0	15
2	Selfâ€adhesive plasticized regenerated silk on poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) for bioâ€piezoelectric force sensor and microwave circuit design. Journal of Applied Polymer Science, 2021, 138, 49726.	2.6	13
3	Printable smart 3D architectures of regenerated silk on poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Materials and Design, 2021, 201, 109492.	7.0	24
4	Carbon Nanotubes/Regenerated Silk Composite as a Three-Dimensional Printable Bio-Adhesive Ink with Self-Powering Properties. ACS Applied Materials & amp; Interfaces, 2021, 13, 21007-21017.	8.0	17
5	Biomimetic Tendrils by Four Dimensional Printing Bimorph Springs with Torsion and Contraction Properties Based on Bio ompatible Graphene/Silk Fibroin and Poly(3â€Hydroxybutyrateâ€ <i>co</i> â€3â€Hydroxyvalerate). Advanced Functional Materials, 2021, 31, 2105665	14.9	18
6	Stretchable, Bio-Compatible, Antioxidant and Self-Powering Adhesives from Soluble Silk Fibroin and Vegetal Polyphenols Exfoliated Graphite. Nanomaterials, 2021, 11, 2352.	4.1	8
7	Conductive elastomer engineering in extreme environments. , 2020, , 235-255.		0
8	Mechanical characterization and induced crystallization in nanocomposites of thermoplastics and carbon nanotubes. Npj Computational Materials, 2020, 6, .	8.7	8
9	Free-Standing Graphene Oxide and Carbon Nanotube Hybrid Papers with Enhanced Electrical and Mechanical Performance and Their Synergy in Polymer Laminates. International Journal of Molecular Sciences, 2020, 21, 8585.	4.1	7
10	Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites. Polymers, 2020, 12, 1596.	4.5	5
11	Plasticised Regenerated Silk/Gold Nanorods Hybrids as Sealant and Bio-Piezoelectric Materials. Nanomaterials, 2020, 10, 179.	4.1	8
12	3-D-Printing-Based Selective-Ink-Deposition Technique Enabling Complex Antenna and RF Structures for 5G Applications up to 6 GHz. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 1434-1447.	2.5	14
13	Regenerated Silk and Carbon Nanotubes Dough as Masterbatch for High Content Filled Nanocomposites. Frontiers in Materials, 2019, 6, .	2.4	5
14	The Impact of Shear and Elongational Forces on Structural Formation of Polyacrylonitrile/Carbon Nanotubes Composite Fibers during Wet Spinning Process. Materials, 2019, 12, 2797.	2.9	19
15	Bionicomposites. Nanoscale, 2019, 11, 3102-3111.	5.6	15
16	Bionic Superfibers. , 2019, , 431-443.		1
17	Ice-regenerated flame retardant and robust film of <i>Bombyx mori</i> silk fibroin and POSS nano-cages. RSC Advances, 2018, 8, 9063-9069.	3.6	3
18	Nitrile butadiene rubber composites reinforced with reduced graphene oxide and carbon nanotubes show superior mechanical, electrical and icephobic properties. Composites Science and Technology, 2018, 166, 109-114.	7.8	51

#	Article	IF	CITATIONS
19	Silkworm silk fibers vs PEEK reinforced rubber luminescent strain gauge and stretchable composites. Composites Science and Technology, 2018, 156, 254-261.	7.8	8
20	Rubber Nanocomposites for Extreme Environments: Critics and Counterintuitive Solutions. Frontiers in Materials, 2018, 5, .	2.4	3
21	Combining Living Microorganisms with Regenerated Silk Provides Nanofibril-Based Thin Films with Heat-Responsive Wrinkled States for Smart Food Packaging. Nanomaterials, 2018, 8, 518.	4.1	17
22	Graphene and Carbon Nanotube Auxetic Rubber Bionic Composites with Negative Variation of the Electrical Resistance and Comparison with Their Nonbionic Counterparts. Advanced Functional Materials, 2017, 27, 1606526.	14.9	38
23	Development of conductive paraffin/graphene films laminated on fluoroelastomers with high strain recovery and anti-corrosive properties. Composites Science and Technology, 2017, 149, 254-261.	7.8	11
24	Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Composites Science and Technology, 2016, 128, 123-130.	7.8	78
25	Microorganism Nutrition Processes as a General Route for the Preparation of Bionic Nanocomposites Based on Intractable Polymers. ACS Applied Materials & Interfaces, 2016, 8, 22714-22720.	8.0	11
26	Severe graphene nanoplatelets aggregation as building block for the preparation of negative temperature coefficient and healable silicone rubber composites. Composites Science and Technology, 2016, 134, 125-131.	7.8	31
27	Fermentation based carbon nanotube multifunctional bionic composites. Scientific Reports, 2016, 6, 27031.	3.3	21
28	Graphene-Based Bionic Composites with Multifunctional and Repairing Properties. ACS Applied Materials & Interfaces, 2016, 8, 7607-7612.	8.0	30
29	Fabrication of three-dimensional patterns of reduced graphene oxide through grid-assisted deposition. Materials Letters, 2015, 157, 265-268.	2.6	7
30	Electrical and morphological characterization of multiwalled carbon nanotubes functionalized via the Bingel reaction. Journal of Physics and Chemistry of Solids, 2015, 83, 121-134.	4.0	5
31	Bio-inspired materials and graphene for electronic applications. Materials Letters, 2015, 148, 204-207.	2.6	9
32	Preparation of Alginate/Graphene Oxide Hybrid Films and Their Integration in Triboelectric Generators. European Journal of Inorganic Chemistry, 2015, 2015, 1192-1197.	2.0	25
33	Multilayer films composed of conductive poly(3â€hydroxybutyrate)/carbon nanotubes bionanocomposites and a photoresponsive conducting polymer. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 596-602.	2.1	16
34	Hot press transferring of graphene nanoplatelets on polyurethane block copolymers film for electroactive shape memory devices. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1100-1106.	2.1	11
35	Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films. Applied Physics Letters, 2014, 105, 153111.	3.3	35
36	Flexible triboelectric generator and pressure sensor based on poly[(<i>R</i>)â€3â€hydroxybutyric acid] biopolymer. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 859-863.	2.1	20

#	Article	IF	CITATIONS
37	Effects of dielectric barrier discharge in air on morphological and electrical properties of graphene nanoplatelets and multi-walled carbon nanotubes. Journal of Physics and Chemistry of Solids, 2014, 75, 858-868.	4.0	11
38	Preparation of transparent and conductive cellulose nanocrystals/graphene nanoplatelets films. Journal of Materials Science, 2014, 49, 1009-1013.	3.7	30
39	Processing of nanostructured polymers and advanced polymeric based nanocomposites. Materials Science and Engineering Reports, 2014, 85, 1-46.	31.8	190
40	Pyroshock testing on graphene based EPDM nanocomposites. Composites Part B: Engineering, 2014, 60, 479-484.	12.0	21
41	Cellulose nanocrystals thin films as gate dielectric for flexible organic field-effect transistors. Materials Letters, 2014, 126, 55-58.	2.6	38
42	Poly(methyl methacrylate)/Graphene Oxide Layered Films as Generators for Mechanical Energy Harvesting. ACS Applied Materials & Interfaces, 2013, 5, 3770-3775.	8.0	8
43	Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Composites Science and Technology, 2013, 87, 103-110.	7.8	94
44	Multistimuli-responsive hydrogels of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) containing graphene. Colloid and Polymer Science, 2013, 291, 2681-2687.	2.1	13
45	45S5 Bioglass®-derived scaffolds coated with organic–inorganic hybrids containing graphene. Materials Science and Engineering C, 2013, 33, 3592-3600.	7.3	29
46	Transfer writing of foldable graphene nanoplatelet patterns on paper substrates. Materials Letters, 2013, 113, 54-58.	2.6	4
47	A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Materials Letters, 2013, 105, 4-7.	2.6	110
48	Liquid Droplet excitation of freestanding poly(methyl methacrylate)/graphene oxide films for mechanical energy harvesting. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1028-1032.	2.1	11
49	Flexible Transistors Exploiting P3HT on Paper Substrate and Graphene Oxide Film as Gate Dielectric: Proof of Concept. Science of Advanced Materials, 2013, 5, 530-533.	0.7	11
50	Plasma etching of polystyrene latex particles for the preparation of graphene oxide nanowalls. Journal of the Serbian Chemical Society, 2012, 77, 1701-1707.	0.8	0
51	LIGHT INDUCED CHANGE IN CONDUCTIVITY OF GRAPHENE OXIDE FILMS PATTERNED BY METAL MASKS. Functional Materials Letters, 2012, 05, 1250034.	1.2	Ο
52	Deposition of amino-functionalized polyhedral oligomeric silsesquioxanes on graphene oxide sheets immobilized onto an amino-silane modified silicon surface. Journal of Materials Chemistry, 2012, 22, 6213.	6.7	73
53	Emerging methods for producing graphene oxide composites in coatings with multifunctional properties. Journal of Materials Chemistry, 2012, 22, 21355.	6.7	9
54	Processing and functionalization effect in CNF/PMMA nanocomposites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 711-721.	7.6	15

#	Article	IF	CITATIONS
55	In-situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures. Polymer, 2012, 53, 6039-6044.	3.8	43
56	Graphene based composites prepared through exfoliation of graphite platelets in methyl methacrylate/poly(methyl methacrylate). Polymer International, 2012, 61, 1079-1083.	3.1	16
57	A Photoresponsive Hybrid Nanomaterial Based on Graphene and Polyhedral Oligomeric Silsesquioxanes. European Journal of Inorganic Chemistry, 2012, 2012, 5282-5287.	2.0	18
58	POSS vapor grafting on graphene oxide film. Chemical Physics Letters, 2012, 537, 84-87.	2.6	20
59	Preparation and characterization of poly (butylene terephthalate)/graphene composites by in-situ polymerization of cyclic butylene terephthalate. Polymer, 2012, 53, 897-902.	3.8	84
60	Anisotropic Electrical Transport Properties of Graphene Nanoplatelets/Pyrene Composites by Electric-Field-Assisted Thermal Annealing. Journal of Physical Chemistry C, 2011, 115, 16652-16656.	3.1	13
61	Formation of unzipped carbon nanotubes by CF4 plasma treatment. Diamond and Related Materials, 2011, 20, 445-448.	3.9	23
62	Wettability and switching of electrical conductivity in UV irradiated graphene oxide films. Diamond and Related Materials, 2011, 20, 871-874.	3.9	21
63	A new terpyridine tethered polythiophene: Electrosynthesis and characterization. Journal of Polymer Science Part A, 2011, 49, 3513-3523.	2.3	15
64	Transparent and Conductive Graphene Oxide/Poly(ethylene glycol) diacrylate Coatings Obtained by Photopolymerization. Macromolecular Materials and Engineering, 2011, 296, 401-407.	3.6	49
65	Radiofrequency plasma assisted exfoliation and reduction of large-area graphene oxide platelets produced by a mechanical transfer process. Chemical Physics Letters, 2011, 508, 285-288.	2.6	18
66	Mapping of carbon nanotubes in the polystyrene domains of a polystyrene-b-polyisoprene-b-polystyrene block copolymer matrix using electrostatic force microscopy. Carbon, 2010, 48, 2590-2595.	10.3	22
67	Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrical properties of PEDOT:PSS polymer composites. Chemical Physics Letters, 2010, 494, 264-268.	2.6	34
68	Stimuliâ€responsive polymer hydrogels containing partially exfoliated graphite. Journal of Polymer Science Part A, 2010, 48, 5375-5381.	2.3	48
69	Probing the Sequestering of Carbon Nanotubes in the PS Domains of SIS Block Copolymer Matrix using Electrostatic Force Microscopy. , 2010, , .		0
70	Use of butylamine modified graphene sheets in polymer solar cells. Journal of Materials Chemistry, 2010, 20, 995-1000.	6.7	99
71	Morphology and Photoelectrical Properties of Solution Processable Butylamine-Modified Graphene- and Pyrene-Based Organic Semiconductor. Journal of Physical Chemistry C, 2010, 114, 11252-11257.	3.1	17
72	New anthraceneâ€containing phenylene―or thienyleneâ€vinylene copolymers: Synthesis, characterization, photophysics, and photovoltaics. Journal of Applied Polymer Science, 2009, 113, 1173-1181.	2.6	6

#	Article	IF	CITATIONS
73	Surfactant assisted selective confinement of carbon nanotubes functionalized with octadecylamine in a poly(styrene-b-isoprene-b-styrene) block copolymer matrix. Carbon, 2009, 47, 2474-2480.	10.3	28
74	Plasma Fluorination of Chemically Derived Graphene Sheets and Subsequent Modification With Butylamine. Chemistry of Materials, 2009, 21, 3433-3438.	6.7	151
75	Use of plasma fluorinated single-walled carbon nanotubes for the preparation of nanocomposites with epoxy matrix. Composites Science and Technology, 2008, 68, 1008-1014.	7.8	56
76	Anisotropic Electrical Transport Properties of Aligned Carbon Nanotube/PMMA Films Obtained by Electricâ€Fieldâ€Assisted Thermal Annealing. Macromolecular Materials and Engineering, 2008, 293, 867-871.	3.6	19
77	Chemorheological behaviour of double-walled carbon nanotube-epoxy nanocomposites. Composites Science and Technology, 2008, 68, 1862-1868.	7.8	35
78	Organized fluidic assembly of single-walled carbon nanotubes onto fluorine-doped tin-oxide surface with modified wettability. Carbon, 2008, 46, 372-375.	10.3	1
79	Solution casting of transparent and conductive carbon nanotubes/poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) films under a magnetic field. Carbon, 2008, 46, 1513-1517.	10.3	11
80	Electrodeposition of carbon nanotube semi-transparent thin films: A facile route for preparing photoactive polymeric hybrid materials. Diamond and Related Materials, 2008, 17, 1573-1576.	3.9	7
81	Patterning of [2.2]paracyclophane derivative modified single-walled carbon nanotubes through grid-assisted deposition. Journal of Materials Chemistry, 2008, 18, 484-488.	6.7	14
82	Novel Anthracene-Core Molecule for the Development of Efficient PCBM-Based Solar Cells. Chemistry of Materials, 2008, 20, 32-34.	6.7	107
83	Realization of porous poly(methyl methacrylate) films filled with electrodeposited carbon nanotubes. Nanotechnology, 2008, 19, 295301.	2.6	2
84	Synthesis and photoelectrical properties of carbon nanotube–dendritic porphyrin light harvesting molecule systems. Diamond and Related Materials, 2007, 16, 658-663.	3.9	28
85	Electrodeposited carbon nanotubes as template for the preparation of semi-transparent conductive thin films by in situ polymerization of methyl methacrylate. Carbon, 2007, 45, 2685-2691.	10.3	20
86	Self-Assembly of Photoresponsive [2.2]Paracyclophane-Derivative Nanostripes on a Conducting Surface with Modified Wettability. Small, 2007, 3, 1200-1203.	10.0	19
87	Selective interaction of single-walled carbon nanotubes with conducting dendrimer. Diamond and Related Materials, 2006, 15, 95-99.	3.9	16
88	[2.2]Paracyclophanes incorporated within poly(3-butylthiophene): synthesis and photoelectrical properties. New Journal of Chemistry, 2006, 30, 939.	2.8	25
89	Modification of fluorinated single-walled carbon nanotubes with aminosilane molecules. Carbon, 2006, 44, 2196-2201.	10.3	61
90	Enhancement of photoelectrical properties in polymer nanocomposites containing modified single-walled carbon nanotubes by conducting dendrimer. Journal of Applied Physics, 2006, 99, 114305.	2.5	14

#	Article	IF	CITATIONS
91	Interaction of oxygen with nanocomposites made of n-type conducting polymers and carbon nanotubes: role of charge transfer complex formation between nanotubes and poly(3-octylthiophene). Thin Solid Films, 2005, 476, 162-167.	1.8	9
92	Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon, 2005, 43, 1499-1505.	10.3	586
93	Sidewall functionalization of single-walled carbon nanotubes through CF4 plasma treatment and subsequent reaction with aliphatic amines. Chemical Physics Letters, 2005, 403, 385-389.	2.6	92
94	Electrically switchable carbon nanotubes hydrophobic surfaces. Diamond and Related Materials, 2005, 14, 121-124.	3.9	14
95	Chemical gating and photoconductivity of CF4 plasma-functionalized single-walled carbon nanotubes with adsorbed butylamine. Journal of Applied Physics, 2005, 97, 114320.	2.5	17
96	Crystallization and Melting Behavior of Poly(3-butylthiophene), Poly(3-octylthiophene), and Poly(3-dodecylthiophene). Macromolecules, 2005, 38, 409-415.	4.8	155
97	Vacancy-Induced Chemisorption of NO2on Carbon Nanotubes:Â A Combined Theoretical and Experimental Study. Journal of Physical Chemistry B, 2005, 109, 13175-13179.	2.6	44