Yong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5650228/publications.pdf

Version: 2024-02-01

56	2,928	27 h-index	54
papers	citations		g-index
60	60	60	3715 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	400-V Amorphous IGZO Thin-Film Transistors With Drift Region Doped by Hydrogen. IEEE Transactions on Electron Devices, 2022, 69, 3732-3736.	3.0	5
2	Reliability of Ultrathin High $-\text{mathcal}\{K\}$ Dielectrics on 2D Semiconductors., 2021,,.		0
3	High-Voltage a-IGZO TFTs With the Stair Gate-Dielectric Structure. IEEE Transactions on Electron Devices, 2021, 68, 4462-4466.	3.0	10
4	Printable Semiconductors for Backplane TFTs of Flexible OLED Displays. Advanced Functional Materials, 2020, 30, 1904588.	14.9	136
5	Precise Extraction of Charge Carrier Mobility for Organic Transistors. Advanced Functional Materials, 2020, 30, 1904508.	14.9	34
6	Printable Transistors: Printable Semiconductors for Backplane TFTs of Flexible OLED Displays (Adv.) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 50
7	Sharply Increased Current in Asymmetrically Aligned Polycrystalline Polymer Transistors With Sub-Domain-Size Channels. IEEE Electron Device Letters, 2020, 41, 589-592.	3.9	6
8	Role of Schottky Barrier and Access Resistance in Organic Field-Effect Transistors. Journal of Physical Chemistry Letters, 2020, 11, 1466-1472.	4.6	19
9	Suppressing off-state current via molecular orientation in submicrometer polymer field-effect transistors. Organic Electronics, 2020, 83, 105742.	2.6	2
10	Corrections to "Sharply Increased Current in Asymmetrically Aligned Polycrystalline Polymer Transistors With Sub-Domain-Size Channels―[Apr 20 589-592]. IEEE Electron Device Letters, 2020, 41, 1265-1265.	3.9	0
11	Reliability of Ultrathin High-κ Dielectrics on Chemical-vapor Deposited 2D Semiconductors. , 2020, , .		5
12	Understanding Thickness-Dependent Electrical Characteristics in Conjugated Polymer Transistors With Top-Gate Staggered Structure. IEEE Transactions on Electron Devices, 2019, 66, 2723-2728.	3.0	10
13	Spontaneous Doping at the Polymer–Polymer Interface for High-Performance Organic Transistors. ACS Applied Materials & Diterfaces, 2019, 11, 12709-12716.	8.0	24
14	Reliable Mobility Evaluation of Organic Field-Effect Transistors With Different Contact Metals. IEEE Electron Device Letters, 2019, 40, 605-608.	3.9	13
15	Doping: A Key Enabler for Organic Transistors. Advanced Materials, 2018, 30, e1801830.	21.0	141
16	Negative-Differential-Resistance Devices Achieved by Band-Structure Engineering in Silicene under Periodic Potentials. Physical Review Applied, 2018, 10, .	3.8	19
17	Essential Effects on the Mobility Extraction Reliability for Organic Transistors. Advanced Functional Materials, 2018, 28, 1803907.	14.9	54
18	Roomâ€Temperature Solutionâ€Synthesized pâ€Type Copper(I) Iodide Semiconductors for Transparent Thinâ€Film Transistors and Complementary Electronics. Advanced Materials, 2018, 30, e1802379.	21.0	125

#	Article	IF	CITATIONS
19	Transparent Electronics: Roomâ€Temperature Solutionâ€Synthesized pâ€Type Copper(I) lodide Semiconductors for Transparent Thinâ€Film Transistors and Complementary Electronics (Adv. Mater.) Tj ETQq1	1 027788 4 314	· rg&T /Over
20	Solution Processed Metal Oxide Highâ€Îº Dielectrics for Emerging Transistors and Circuits. Advanced Materials, 2018, 30, e1706364.	21.0	158
21	Schottky Barrier in Organic Transistors. IEEE Transactions on Electron Devices, 2017, 64, 1932-1943.	3.0	42
22	Flexible Organic Amplifiers. IEEE Transactions on Electron Devices, 2017, 64, 1944-1954.	3.0	8
23	Current Status and Opportunities of Organic Thin-Film Transistor Technologies. IEEE Transactions on Electron Devices, 2017, 64, 1906-1921.	3.0	224
24	Generating one-dimensional micro- or nano-structures with in-plane alignment by vapor-driven wetting kinetics. Materials Horizons, 2017, 4, 259-267.	12.2	9
25	Conjugated Polymers: Exploring the Charge Transport in Conjugated Polymers (Adv. Mater. 41/2017). Advanced Materials, 2017, 29, .	21.0	2
26	Exploring the Charge Transport in Conjugated Polymers. Advanced Materials, 2017, 29, 1702729.	21.0	70
27	Control of Threshold Voltage for Top-Gated Ambipolar Field-Effect Transistor by Gate Buffer Layer. ACS Applied Materials & Diterfaces, 2016, 8, 17416-17420.	8.0	10
28	Highâ€Mobility Naphthalene Diimide and Selenopheneâ€Vinyleneâ€Selenopheneâ€Based Conjugated Polymer: nâ€Channel Organic Fieldâ€Effect Transistors and Structure–Property Relationship. Advanced Functional Materials, 2016, 26, 4984-4997.	14.9	75
29	Planarâ€Processed Polymer Transistors. Advanced Materials, 2016, 28, 8531-8537.	21.0	60
30	Universal diffusion-limited injection and the hook effect in organic thin-film transistors. Scientific Reports, 2016, 6, 29811.	3.3	23
31	Effect of Polymer Gate Dielectrics on Charge Transport in Carbon Nanotube Network Transistors: Low- <i>k</i> Insulator for Favorable Active Interface. ACS Applied Materials & Dielectric Science (1988), 32421-32431.	8.0	35
32	Large Enhancement of Carrier Transport in Solutionâ€Processed Fieldâ€Effect Transistors by Fluorinated Dielectric Engineering. Advanced Materials, 2016, 28, 518-526.	21.0	87
33	Facile Route To Control the Ambipolar Transport in Semiconducting Polymers. Chemistry of Materials, 2016, 28, 2287-2294.	6.7	53
34	Simultaneous Improvement of Hole and Electron Injection in Organic Field-effect Transistors by Conjugated Polymer-wrapped Carbon Nanotube Interlayers. Scientific Reports, 2015, 5, 10407.	3.3	28
35	Origin of Noise in Layered MoTe ₂ Transistors and its Possible Use for Environmental Sensors. Advanced Materials, 2015, 27, 6612-6619.	21.0	72
36	Facile Routes To Improve Performance of Solution-Processed Amorphous Metal Oxide Thin Film Transistors by Water Vapor Annealing. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13289-13294.	8.0	47

#	Article	IF	Citations
37	Development of high-performance printed organic field-effect transistors and integrated circuits. Physical Chemistry Chemical Physics, 2015, 17, 26553-26574.	2.8	100
38	On the Origin of Improved Charge Transport in Double-Gate In–Ga–Zn–O Thin-Film Transistors: A Low-Frequency Noise Perspective. IEEE Electron Device Letters, 2015, 36, 1040-1043.	3.9	14
39	Contact engineering in organic field-effect transistors. Materials Today, 2015, 18, 79-96.	14.2	407
40	Effect of Doping Concentration on Microstructure of Conjugated Polymers and Characteristics in Nâ€Type Polymer Fieldâ€Effect Transistors. Advanced Functional Materials, 2015, 25, 758-767.	14.9	54
41	Significant roles of low-temperature post-metallization annealing in solution-processed oxide thin-film transistors. Applied Physics Letters, 2014, 105, .	3.3	24
42	Evaluating injection and transport properties of organic field-effect transistors by the convergence point in transfer-length method. Applied Physics Letters, 2014, 104, .	3.3	20
43	Organic Field-Effect Transistors: Dramatic Inversion of Charge Polarity in Diketopyrrolopyrrole-Based Organic Field-Effect Transistors via a Simple Nitrile Group Substitution (Adv. Mater. 43/2014). Advanced Materials, 2014, 26, 7282-7282.	21.0	1
44	Control of Ambipolar and Unipolar Transport in Organic Transistors by Selective Inkjetâ€Printed Chemical Doping for High Performance Complementary Circuits. Advanced Functional Materials, 2014, 24, 6252-6261.	14.9	116
45	Gradual Controlling the Work Function of Metal Electrodes by Solutionâ€Processed Mixed Interlayers for Ambipolar Polymer Fieldâ€Effect Transistors and Circuits. Advanced Functional Materials, 2014, 24, 6484-6491.	14.9	32
46	Regulating Charge Injection in Ambipolar Organic Field-Effect Transistors by Mixed Self-Assembled Monolayers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14493-14499.	8.0	27
47	Understanding Thickness-Dependent Charge Transport in Pentacene Transistors by Low-Frequency Noise. IEEE Electron Device Letters, 2013, 34, 1298-1300.	3.9	19
48	Contact Thickness Effects in Bottom-Contact Coplanar Organic Field-Effect Transistors. IEEE Electron Device Letters, 2013, 34, 535-537.	3.9	13
49	How small the contacts could be optimal for nanoscale organic transistors?. Organic Electronics, 2013, 14, 1797-1804.	2.6	16
50	Joule's law for organic transistors exploration: Case of contact resistance. Journal of Applied Physics, 2013, 113, 064507.	2.5	19
51	Highly enhanced charge injection in thienoacene-based organic field-effect transistors with chemically doped contact. Applied Physics Letters, 2012, 100, .	3.3	130
52	Solution-processed organic crystals for field-effect transistor arrays with smooth semiconductor/dielectric interface on paper substrates. Organic Electronics, 2012, 13, 815-819.	2.6	65
53	Carrier mobility in organic field-effect transistors. Journal of Applied Physics, 2011, 110, 104513.	2.5	43
54	Theoretical analysis of carrier mobility in organic field-effect transistors. Applied Physics Letters, 2011, 98, .	3.3	16

#	Article	lF	CITATIONS
55	Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors. Journal of Applied Physics, 2010, 107, .	2.5	181
56	Performance Limits and Potential of Multilayer Graphene–Tungsten Diselenide Heterostructures. Advanced Electronic Materials, 0, , 2100355.	5.1	2