Friedhelm Schwenker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/56501/publications.pdf

Version: 2024-02-01

174 papers 3,370 citations

28 h-index 214800 47 g-index

192 all docs

192 docs citations

192 times ranked 2281 citing authors

#	Article	IF	CITATIONS
1	A Theoretical Approach to Ordinal Classification: Feature Space-Based Definition and Classifier-Independent Detection of Ordinal Class Structures. Applied Sciences (Switzerland), 2022, 12, 1815.	2.5	3
2	Machine Learning in Cereal Crops Disease Detection: A Review. Algorithms, 2022, 15, 75.	2.1	21
3	CovidConvLSTM: A fuzzy ensemble model for COVID-19 detection from chest X-rays. Expert Systems With Applications, 2022, 206, 117812.	7.6	15
4	Multi-Modal Pain Intensity Recognition Based on the $\langle i \rangle$ SenseEmotion $\langle i \rangle$ Database. IEEE Transactions on Affective Computing, 2021, 12, 743-760.	8.3	50
5	Automatic pectoral muscle removal in mammograms. Evolving Systems, 2021, 12, 519-526.	3.9	17
6	Personalized k-fold Cross-Validation Analysis with Transfer from Phasic to Tonic Pain Recognition on X-ITE Pain Database. Lecture Notes in Computer Science, 2021, , 788-802.	1.3	1
7	Binary Classification: Counterbalancing Class Imbalance by Applying Regression Models in Combination with One-sided Label Shifts. , 2021, , .		2
8	Introducing Bidirectional Ordinal Classifier Cascades Based on a Pain Intensity Recognition Scenario. Lecture Notes in Computer Science, 2021, , 773-787.	1.3	3
9	Enhanced Region Growing for Brain Tumor MR Image Segmentation. Journal of Imaging, 2021, 7, 22.	3.0	53
10	Keynote: Machine learning and data analysis of multimodal affective and pain data. , 2021, , .		0
11	Median Filter Aided CNN Based Image Denoising: An Ensemble Approach. Algorithms, 2021, 14, 109.	2.1	9
12	Computer Aided Breast Cancer Detection Using Ensembling of Texture and Statistical Image Features. Sensors, 2021, 21, 3628.	3.8	23
13	Prediction of COVID-19 from Chest CT Images Using an Ensemble of Deep Learning Models. Applied Sciences (Switzerland), 2021, 11, 7004.	2.5	34
14	Ensemble of Deep Learning Models for Sleep Apnea Detection: An Experimental Study. Sensors, 2021, 21, 5425.	3.8	13
15	A Survey of Brain Tumor Segmentation and Classification Algorithms. Journal of Imaging, 2021, 7, 179.	3.0	64
16	Multi-Modal Pain Intensity Assessment Based on Physiological Signals: A Deep Learning Perspective. Frontiers in Physiology, 2021, 12, 720464.	2.8	16
17	Two to Trust: AutoML for Safe Modelling and Interpretable Deep Learning for Robustness. Lecture Notes in Computer Science, 2021, , 268-275.	1.3	О
18	Next-Generation Neural Networks: Capsule Networks With Routing-by-Agreement for Text Classification. IEEE Access, 2021, 9, 125269-125299.	4.2	7

#	Article	IF	Citations
19	Using Meta Labels for the Training of Weighting Models in a Sample-Specific Late Fusion Classification Architecture., 2021,,.		3
20	JUMRv1: A Sentiment Analysis Dataset for Movie Recommendation. Applied Sciences (Switzerland), 2021, 11, 9381.	2.5	5
21	A novel segmentation technique for online handwritten Bangla words. Pattern Recognition Letters, 2020, 139, 26-33.	4.2	11
22	Survey of deep learning in breast cancer image analysis. Evolving Systems, 2020, 11, 143-163.	3.9	106
23	Gray Level Image Contrast Enhancement Using Barnacles Mating Optimizer. IEEE Access, 2020, 8, 169196-169214.	4.2	16
24	Radial Basis Function Networks for Convolutional Neural Networks to Learn Similarity Distance Metric and Improve Interpretability. IEEE Access, 2020, 8, 123087-123097.	4.2	22
25	Deep Learning in Selected Cancers' Image Analysis—A Survey. Journal of Imaging, 2020, 6, 121.	3.0	42
26	Dominant Channel Fusion Architectures - An Intelligent Late Fusion Approach. , 2020, , .		3
27	Ordinal Classification: Working Definition and Detection of Ordinal Structures. IEEE Access, 2020, 8, 164380-164391.	4.2	10
28	Two-Stream Attention Network for Pain Recognition from Video Sequences. Sensors, 2020, 20, 839.	3.8	25
29	The uulmMAC Database—A Multimodal Affective Corpus for Affective Computing in Human-Computer Interaction. Sensors, 2020, 20, 2308.	3.8	20
30	Pain Intensity Recognition - An Analysis of Short-Time Sequences in a Real-World Scenario. Lecture Notes in Computer Science, 2020, , 149-161.	1.3	2
31	Multimodal Deep Denoising Convolutional Autoencoders for Pain Intensity Classification based on Physiological Signals., 2020, , .		18
32	Subject-independent Pain Recognition using Physiological Signals and Para-linguistic Vocalizations. , 2020, , .		2
33	Person Identification based on Physiological Signals: Conditions and Risks. , 2020, , .		3
34	Using Mask R-CNN for Image-Based Wear Classification of Solid Carbide Milling and Drilling Tools. Lecture Notes in Computer Science, 2020, , 223-234.	1.3	1
35	Deep Learning Algorithms for Emotion Recognition on Low Power Single Board Computers. Lecture Notes in Computer Science, 2019, , 59-70.	1.3	4
36	Artificial Development by Reinforcement Learning Can Benefit From Multiple Motivations. Frontiers in Robotics and Al, 2019, 6, 6.	3.2	8

#	Article	lF	CITATIONS
37	Exploring Deep Physiological Models for Nociceptive Pain Recognition. Sensors, 2019, 19, 4503.	3.8	39
38	A dataset of continuous affect annotations and physiological signals for emotion analysis. Scientific Data, 2019, 6, 196.	5.3	79
39	Evaluation of modified adaptive k-means segmentation algorithm. Computational Visual Media, 2019, 5, 347-361.	17.5	42
40	Visualizing Facial Expression Features of Pain and Emotion Data. Lecture Notes in Computer Science, 2019, , 101-115.	1.3	3
41	Evolutionary Algorithms for the Design of Neural Network Classifiers for the Classification of Pain Intensity. Lecture Notes in Computer Science, 2019, , 84-100.	1.3	6
42	Combining Deep and Hand-Crafted Features for Audio-Based Pain Intensity Classification. Lecture Notes in Computer Science, 2019, , 49-58.	1.3	4
43	A functional data analysis approach for continuous 2-D emotion annotations. Web Intelligence, 2019, 17, 41-52.	0.2	5
44	Feature Selection for Recognition of Online Handwritten Bangla Characters. Neural Processing Letters, 2019, 50, 2281-2304.	3.2	13
45	Using a Quartile-based Data Transformation for Pain Intensity Classification based on the SenseEmotion Database. , 2019, , .		6
46	Dropout Induced Noise for Co-Creative GAN Systems. , 2019, , .		7
47	Deep Domain Adaptation for Facial Expression Analysis. , 2019, , .		4
48	Filter Method Ensemble with Neural Networks. Lecture Notes in Computer Science, 2019, , 755-765.	1.3	2
49	A Temporal Dependency Based Multi-modal Active Learning Approach for Audiovisual Event Detection. Neural Processing Letters, 2018, 48, 709-732.	3.2	8
50	Trace and Detect Adversarial Attacks on CNNs Using Feature Response Maps. Lecture Notes in Computer Science, 2018, , 346-358.	1.3	11
51	Ship classification based on trajectory data with machine-learning methods. , 2018, , .		24
52	Selecting Features from Foreign Classes. Lecture Notes in Computer Science, 2018, , 66-77.	1.3	3
53	Classification of Mammograms Using Convolutional Neural Network Based Feature Extraction. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 89-98.	0.3	20
54	Multi-classifier-Systems: Architectures, Algorithms and Applications. Studies in Computational Intelligence, 2018, , 83-113.	0.9	16

#	Article	IF	CITATIONS
55	Off the Mainstream: Advances in Neural Networks and Machine Learning for Pattern Recognition. Neural Processing Letters, 2018, 48, 643-648.	3.2	8
56	Multimodal Affect Recognition in the Context of Human-Computer Interaction for Companion-Systems. Cognitive Technologies, 2017, , 387-408.	0.8	2
57	Emotion Recognition from Speech. Cognitive Technologies, 2017, , 409-428.	0.8	3
58	Support Vector Regression of Sparse Dictionary-Based Features for View-Independent Action Unit Intensity Estimation. , 2017, , .		11
59	Adaptive confidence learning for the personalization of pain intensity estimation systems. Evolving Systems, 2017, 8, 71-83.	3.9	56
60	Multimodal fusion including camera photoplethysmography for pain recognition., 2017,,.		14
61	Multi-modal data fusion for pain intensity assessment and classification. , 2017, , .		13
62	Pain recognition with camera photoplethysmography. , 2017, , .		18
63	Multi-modal Information Processing in Companion-Systems: A Ticket Purchase System. Cognitive Technologies, 2017, , 493-500.	0.8	2
64	Audio-Visual Recognition of Pain Intensity. Lecture Notes in Computer Science, 2017, , 110-126.	1.3	7
65	The SenseEmotion Database: A Multimodal Database for the Development and Systematic Validation of an Automatic Pain- and Emotion-Recognition System. Lecture Notes in Computer Science, 2017, , 127-139.	1.3	30
66	Bimodal Recognition of Cognitive Load Based on Speech and Physiological Changes. Lecture Notes in Computer Science, 2017, , 12-23.	1.3	2
67	Fusion Architectures for Multimodal Cognitive Load Recognition. Lecture Notes in Computer Science, 2017, , 36-47.	1.3	4
68	The Influence of Annotation, Corpus Design, and Evaluation on the Outcome of Automatic Classification of Human Emotions. Frontiers in ICT, 2016, 3, .	3.6	5
69	On Gestures and Postural Behavior as a Modality in Ensemble Methods. Lecture Notes in Computer Science, 2016, , 312-323.	1.3	1
70	Active Multi-Instance Multi-Label Learning. Studies in Classification, Data Analysis, and Knowledge Organization, 2016, , 91-101.	0.2	8
71	Inferring mental overload based on postural behavior and gestures. , 2016, , .		6
72	Using Radial Basis Function Neural Networks for Continuous and Discrete Pain Estimation from Bio-physiological Signals. Lecture Notes in Computer Science, 2016, , 269-284.	1.3	11

#	Article	IF	CITATIONS
73	Machine Learning Driven Heart Rate Detection with Camera Photoplethysmography in Time Domain. Lecture Notes in Computer Science, 2016, , 324-334.	1.3	6
74	Continuous Multimodal Human Affect Estimation using Echo State Networks. , 2016, , .		9
75	Revisiting the EmotiW challenge: how wild is it really?. Journal on Multimodal User Interfaces, 2016, 10, 151-162.	2.9	17
76	Going Further in Affective Computing: How Emotion Recognition Can Improve Adaptive User Interaction. Intelligent Systems Reference Library, 2016, , 73-103.	1.2	6
77	Methods for Person-Centered Continuous Pain Intensity Assessment From Bio-Physiological Channels. IEEE Journal on Selected Topics in Signal Processing, 2016, 10, 854-864.	10.8	63
78	Ensemble Methods for Continuous Affect Recognition. , 2015, , .		23
79	Data fusion for automated pain recognition. , 2015, , .		11
80	Fusion paradigms in cognitive technical systems for human–computer interaction. Neurocomputing, 2015, 161, 17-37.	5.9	31
81	Ensembles of Support Vector Data Description for Active Learning Based Annotation of Affective Corpora., 2015,,.		4
82	Fusion Mappings for Multimodal Affect Recognition. , 2015, , .		6
83	uulmMAD $\hat{a}\in$ A Human Action Recognition Dataset for Ground-Truth Evaluation and Investigation of View Invariances. Lecture Notes in Computer Science, 2015, , 77-91.	1.3	6
84	Selective neural network ensembles in reinforcement learning: Taking the advantage of many agents. Neurocomputing, 2015, 169, 350-357.	5.9	15
85	Multimodal Data Fusion for Person-Independent, Continuous Estimation of Pain Intensity. Communications in Computer and Information Science, 2015, , 275-285.	0.5	40
86	Preface of pattern recognition in human computer interaction. Pattern Recognition Letters, 2015, 66, 1-3.	4.2	2
87	Emotion recognition from speech signals via a probabilistic echo-state network. Pattern Recognition Letters, 2015, 66, 4-12.	4.2	47
88	Neural Network Ensembles in Reinforcement Learning. Neural Processing Letters, 2015, 41, 55-69.	3.2	29
89	On Annotation and Evaluation of Multi-modal Corpora in Affective Human-Computer Interaction. Lecture Notes in Computer Science, 2015, , 35-44.	1.3	5
90	Bio-Visual Fusion for Person-Independent Recognition of Pain Intensity. Lecture Notes in Computer Science, 2015, , 220-230.	1.3	39

#	Article	lF	Citations
91	Audio-Visual User Identification in HCI Scenarios. Lecture Notes in Computer Science, 2015, , 113-122.	1.3	1
92	Monte Carlo Based Importance Estimation of Localized Feature Descriptors for the Recognition of Facial Expressions. Lecture Notes in Computer Science, 2015, , 34-42.	1.3	0
93	Prosodic, Spectral and Voice Quality Feature Selection Using a Long-Term Stopping Criterion for Audio-Based Emotion Recognition. , 2014, , .		17
94	Inferring Depression and Affect from Application Dependent Meta Knowledge. , 2014, , .		32
95	Detection of Emotional Events utilizing Support Vector Methods in an Active Learning HCl Scenario. , 2014, , .		9
96	Enhanced Autocorrelation in Real World Emotion Recognition. , 2014, , .		6
97	Cascaded Fusion of Dynamic, Spatial, and Textural Feature Sets for Person-Independent Facial Emotion Recognition., 2014,,.		13
98	Spectral graph features for the classification of graphs and graph sequences. Computational Statistics, 2014, 29, 65-80.	1.5	7
99	Using unlabeled data to improve classification of emotional states in human computer interaction. Journal on Multimodal User Interfaces, 2014, 8, 5-16.	2.9	25
100	Pattern classification and clustering: A review of partially supervised learning approaches. Pattern Recognition Letters, 2014, 37, 4-14.	4.2	184
101	Combination of sequential class distributions from multiple channels using Markov fusion networks. Journal on Multimodal User Interfaces, 2014, 8, 257-272.	2.9	12
102	Semi-supervised clustering of large data sets with kernel methods. Pattern Recognition Letters, 2014, 37, 78-84.	4.2	6
103	A New Multi-class Fuzzy Support Vector Machine Algorithm. Lecture Notes in Computer Science, 2014, , 153-164.	1.3	4
104	Majority-Class Aware Support Vector Domain Oversampling for Imbalanced Classification Problems. Lecture Notes in Computer Science, 2014, , 83-92.	1.3	2
105	A Reinforcement Learning Algorithm to Train a Tetris Playing Agent. Lecture Notes in Computer Science, 2014, , 165-170.	1.3	1
106	Ensemble Gaussian mixture models for probability density estimation. Computational Statistics, 2013, 28, 127-138.	1.5	29
107	Investigating fuzzy-input fuzzy-output support vector machines for robust voice quality classification. Computer Speech and Language, 2013, 27, 263-287.	4.3	60
108	Recognizing User Preferences Based on Layered Activity Recognition and First-Order Logic., 2013,,.		4

#	Article	IF	Citations
109	On the discovery of events in EEG data utilizing information fusion. Computational Statistics, 2013, 28, 5-18.	1.5	15
110	Hidden Markov models with graph densities for action recognition. , 2013, , .		4
111	Using speaker group dependent modelling to improve fusion of fragmentary classifier decisions. , 2013,		3
112	Multi-view video based tracking and audio-visual identification of persons in a human-computer-interaction scenario. , 2013, , .		0
113	Multi classifier systems and forward backward feature selection algorithms to classify emotional coloured speech., 2013,,.		15
114	Revisiting AVEC 2011 $\hat{a}\in$ "An Information Fusion Architecture. Smart Innovation, Systems and Technologies, 2013, , 385-393.	0.6	5
115	Semi-supervised Learning. Intelligent Systems Reference Library, 2013, , 215-239.	1.2	39
116	Fusion of Fragmentary Classifier Decisions for Affective State Recognition. Lecture Notes in Computer Science, 2013, , 116-130.	1.3	10
117	Kalman Filter Based Classifier Fusion for Affective State Recognition. Lecture Notes in Computer Science, 2013, , 85-94.	1.3	22
118	Meta-Learning of Exploration and Exploitation Parameters with Replacing Eligibility Traces. Lecture Notes in Computer Science, 2013, , 68-79.	1.3	7
119	Attention-Gated Reinforcement Learning in Neural Networks—A Unified View. Lecture Notes in Computer Science, 2013, , 272-279.	1.3	3
120	Multi-Modal Classifier-Fusion for the Recognition of Emotions. , 2013, , 73-97.		21
121	A Framework for Emotions and Dispositions in Man-Companion Interaction. , 2013, , 99-140.		8
122	The Effect of Fuzzy Training Targets on Voice Quality Classification. Lecture Notes in Computer Science, 2013, , 43-51.	1.3	0
123	Spotting laughter in natural multiparty conversations. ACM Transactions on Interactive Intelligent Systems, 2012, 2, 1-31.	3.7	37
124	Multiple classifier combination using reject options and markov fusion networks. , 2012, , .		13
125	Atlas - Annotation tool using partially supervised learning and multi-view co-learning in human-computer-interaction scenarios. , 2012, , .		5
126	Automatic emotion classification vs. human perception: Comparing machine performance to the human benchmark. , 2012, , .		3

#	Article	IF	Citations
127	A generic framework for the inference of user states in human computer interaction. Journal on Multimodal User Interfaces, 2012, 6, 117-141.	2.9	36
128	Studying Self- and Active-Training Methods for Multi-feature Set Emotion Recognition. Lecture Notes in Computer Science, 2012, , 19-31.	1.3	6
129	On Graph-Associated Matrices and Their Eigenvalues for Optical Character Recognition. Lecture Notes in Computer Science, 2012, , 104-114.	1.3	0
130	A Multi-objective Genetic Algorithm for Pruning Support Vector Machines. , 2011, , .		3
131	Ensemble Methods for Reinforcement Learning with Function Approximation. Lecture Notes in Computer Science, 2011, , 56-65.	1.3	12
132	Multimodal Emotion Classification in Naturalistic User Behavior. Lecture Notes in Computer Science, 2011, , 603-611.	1.3	40
133	Incorporating uncertainty in a layered HMM architecture for human activity recognition. , $2011, \ldots$		14
134	Multiple Classifier Systems for the Classification of Audio-Visual Emotional States. Lecture Notes in Computer Science, 2011, , 359-368.	1.3	65
135	Combining Committee-Based Semi-Supervised Learning and Active Learning. Journal of Computer Science and Technology, 2010, 25, 681-698.	1.5	49
136	Semi-supervised learning for tree-structured ensembles of RBF networks with Co-Training. Neural Networks, 2010, 23, 497-509.	5.9	34
137	A Multiple Classifier System Approach for Facial Expressions in Image Sequences Utilizing GMM Supervectors. , 2010, , .		17
138	Learning a Strategy with Neural Approximated Temporal-Difference Methods in English Draughts. , 2010, , .		7
139	Combining Committee-Based Semi-supervised and Active Learning and Its Application to Handwritten Digits Recognition. Lecture Notes in Computer Science, 2010, , 225-234.	1.3	4
140	Multiple Classifier Systems for the Recogonition of Human Emotions. Lecture Notes in Computer Science, 2010, , 315-324.	1.3	19
141	A Hidden Markov Model Based Approach for Facial Expression Recognition in Image Sequences. Lecture Notes in Computer Science, 2010, , 149-160.	1.3	17
142	Semi-supervised Facial Expressions Annotation Using Co-Training with Fast Probabilistic Tri-Class SVMs. Lecture Notes in Computer Science, 2010, , 70-75.	1.3	5
143	Parallelized Kernel Patch Clustering. Lecture Notes in Computer Science, 2010, , 131-140.	1.3	1
144	Maximum Echo-State-Likelihood Networks for Emotion Recognition. Lecture Notes in Computer Science, 2010, , 60-71.	1.3	1

#	Article	lF	CITATIONS
145	Classifier Fusion for Emotion Recognition from Speech. , 2009, , 95-117.		26
146	The GMM-SVM Supervector Approach for the Recognition of the Emotional Status from Speech. Lecture Notes in Computer Science, 2009, , 894-903.	1.3	17
147	Sensor-Fusion in Neural Networks. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 299-306.	0.2	3
148	Decision Templates Based RBF Network for Tree-Structured Multiple Classifier Fusion. Lecture Notes in Computer Science, 2009, , 92-101.	1.3	5
149	Semi-supervised Learning for Regression with Co-training by Committee. Lecture Notes in Computer Science, 2009, , 121-130.	1.3	11
150	Multimodal Laughter Detection in Natural Discourses. Cognitive Systems Monographs, 2009, , 111-120.	0.1	18
151	Classifier Fusion Applied to Facial Expression Recognition: An Experimental Comparison. Cognitive Systems Monographs, 2009, , 121-129.	0.1	3
152	Experiments with Supervised Fuzzy LVQ. Lecture Notes in Computer Science, 2008, , 125-132.	1.3	6
153	Real-Time Emotion Recognition from Speech Using Echo State Networks. Lecture Notes in Computer Science, 2008, , 205-216.	1.3	24
154	Neural Approximation of Monte Carlo Policy Evaluation Deployed in Connect Four. Lecture Notes in Computer Science, 2008, , 90-100.	1.3	3
155	Emotion Recognition from Speech Using Multi-Classifier Systems and RBF-Ensembles. Studies in Computational Intelligence, 2008, , 49-70.	0.9	14
156	Real-Time Emotion Recognition Using Echo State Networks. Lecture Notes in Computer Science, 2008, , 200-204.	1.3	4
157	Fuzzy-Input Fuzzy-Output One-Against-All Support Vector Machines. , 2007, , 156-165.		23
158	Automated annotation of Orthoptera songs: first results from analysing the DORSA sound repository. Journal of Orthoptera Research, 2006, 15, 105-113.	1.0	13
159	Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theory. Lecture Notes in Computer Science, 2006, , 198-209.	1.3	7
160	Orientation Histograms for Face Recognition. Lecture Notes in Computer Science, 2006, , 253-259.	1.3	10
161	Using Dempster-Shafer Theory in MCF Systems to Reject Samples. Lecture Notes in Computer Science, 2005, , 118-127.	1.3	7
162	Comparison of Multiclass SVM Decomposition Schemes for Visual Object Recognition. Lecture Notes in Computer Science, 2005, , 334-341.	1.3	12

#	Article	IF	CITATIONS
163	Classification of bioacoustic time series based on the combination of global and local decisions. Pattern Recognition, 2004, 37, 2293-2305.	8.1	28
164	Radial basis function neural networks and temporal fusion for the classification of bioacoustic time series. Neurocomputing, 2003, 51, 265-275.	5.9	19
165	Decision templates for the classification of bioacoustic time series. Information Fusion, 2003, 4, 101-109.	19.1	33
166	Hierarchical Object Classification for Autonomous Mobile Robots. Lecture Notes in Computer Science, 2002, , 831-836.	1.3	2
167	Three learning phases for radial-basis-function networks. Neural Networks, 2001, 14, 439-458.	5.9	437
168	Tree-Structured Support Vector Machines for Multi-class Pattern Recognition. Lecture Notes in Computer Science, 2001, , 409-417.	1.3	19
169	Object Classification Using Simple, Colour Based Visual Attention and a Hierarchical Neural Network for Neuro-symbolic Integration. Lecture Notes in Computer Science, 1999, , 267-279.	1.3	4
170	Integral representation of normalized weak Markov systems. Journal of Approximation Theory, 1992, 68, 1-24.	0.8	3
171	An elementary proof of the oscillation lemma for weak Markov systems. Journal of Approximation Theory, 1989, 59, 73-75.	0.8	2
172	Classification of Mammograms Using Texture and CNN Based Extracted Features. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 42, 79-97.	0.5	28
173	Classifier Based Breast Cancer Segmentation. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 47, 41-61.	0.5	12
174	Conditioned hidden Markov model fusion for multimodal classification. , 0, , .		16