Cheng-Peng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5649619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3. Applied Catalysis B: Environmental, 2022, 302, 120840.	20.2	120
2	Covalent Organic Frameworks(COFs) for Sequestration of 99TCO4â^'. Chemical Research in Chinese Universities, 2022, 38, 290-295.	2.6	8
3	Tunable Fluorescence in Two-Component Hydrogen-Bonded Organic Frameworks Based on Energy Transfer. ACS Applied Materials & Interfaces, 2022, 14, 24509-24517.	8.0	15
4	Formulation of Poly(ionic liquids)@COF Nanotrap for Efficient Perrhenate Sequestration from Alkaline Nuclear Waste. Chemistry of Materials, 2022, 34, 5452-5460.	6.7	24
5	Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution. Nature Communications, 2022, 13, .	12.8	62
6	Multi-responsive fluorescent switches and iodine capture of porous hydrogen-bonded self-assemblies. Journal of Materials Chemistry C, 2021, 9, 9932-9940.	5.5	10
7	Optimizing Strategy for Enhancing the Stability and ⁹⁹ TcO ₄ [–] Sequestration of Poly(ionic liquids)@MOFs Composites. ACS Central Science, 2020, 6, 2354-2361.	11.3	48
8	Hybrid Nanosheet Arrays: Boosting Activity on Co ₄ N Porous Nanosheet by Coupling CeO ₂ for Efficient Electrochemical Overall Water Splitting at High Current Densities (Adv. Funct. Mater. 32/2020). Advanced Functional Materials, 2020, 30, 2070213.	14.9	1
9	Coupling NiCo Alloy and CeO ₂ to Enhance Electrocatalytic Hydrogen Evolution in Alkaline Solution. Advanced Sustainable Systems, 2020, 4, 2000122.	5.3	36
10	Construction of electrochemical aptasensors with Ag(I) metalâ^'organic frameworks toward high-efficient detection of ultra-trace penicillin. Applied Surface Science, 2020, 531, 147342.	6.1	41
11	Hierarchically Nanoporous TS-1 Zeolites for Catalytic Oxidation Desulfurization of Liquid Fuels. ACS Applied Nano Materials, 2020, 3, 9393-9400.	5.0	13
12	Metal and Co atalyst Free CO 2 Conversion with a Bifunctional Covalent Organic Framework (COF). ChemCatChem, 2020, 12, 5192-5199.	3.7	17
13	Boosting Activity on Co ₄ N Porous Nanosheet by Coupling CeO ₂ for Efficient Electrochemical Overall Water Splitting at High Current Densities. Advanced Functional Materials, 2020, 30, 1910596.	14.9	218
14	A Highly Efficient Coordination Polymer for Selective Trapping and Sensing of Perrhenate/Pertechnetate. ACS Applied Materials & Interfaces, 2020, 12, 15246-15254.	8.0	57
15	Doubly Interpenetrated Zn ₄ O-Based Metal–Organic Framework for CO ₂ Chemical Transformation and Antibiotic Sensing. Crystal Growth and Design, 2019, 19, 5228-5236.	3.0	31
16	Nanoporous Gold Embedded ZIF Composite for Enhanced Electrochemical Nitrogen Fixation. Angewandte Chemie - International Edition, 2019, 58, 15362-15366.	13.8	205
17	Mechanism–Property Correlation in Coordination Polymer Crystals toward Design of a Superior Sorbent. ACS Applied Materials & Interfaces, 2019, 11, 42375-42384.	8.0	24
18	Nanoporous Gold Embedded ZIF Composite for Enhanced Electrochemical Nitrogen Fixation. Angewandte Chemie, 2019, 131, 15506-15510.	2.0	46

#	Article	IF	CITATIONS
19	Ultra-highly selective trapping of perrhenate/pertechnetate by a flexible cationic coordination framework. Chemical Communications, 2019, 55, 1841-1844.	4.1	49
20	Rational Construction of an Exceptionally Stable MOF Catalyst with Metalâ€Adeninate Vertices toward CO ₂ Cycloaddition under Mild and Cocatalystâ€Free Conditions. Chemistry - A European Journal, 2019, 25, 11474-11480.	3.3	50
21	Metal-Assembled, Resorcin[4]arene-Based Molecular Trimer for Efficient Removal of Toxic Dichromate Pollutants and Knoevenagel Condensation Reaction. ACS Applied Materials & Interfaces, 2019, 11, 15591-15597.	8.0	33
22	Encapsulation of an Ionic Metalloporphyrin into a Zeolite Imidazolate Framework in situ for CO ₂ Chemical Transformation via Host–Guest Synergistic Catalysis. Chemistry - an Asian Journal, 2019, 14, 958-962.	3.3	39
23	Divergent Structural Transformations in 3D Ag(I) Porous Coordination Polymers Induced by Solvent and Anion Exchanges. Crystal Growth and Design, 2019, 19, 2235-2244.	3.0	12
24	Design of a Highly-Stable Pillar-Layer Zinc(II) Porous Framework for Rapid, Reversible, and Multi-Responsive Luminescent Sensor in Water. Crystal Growth and Design, 2019, 19, 694-703.	3.0	142
25	A Double-Walled Bimetal–Organic Framework for Antibiotics Sensing and Size-Selective Catalysis. Inorganic Chemistry, 2018, 57, 15062-15068.	4.0	57
26	Water-Stable Metal–Organic Framework for Effective and Selective Cr ₂ O ₇ ^{2–} Capture through Single-Crystal to Single-Crystal Anion Exchange. Inorganic Chemistry, 2018, 57, 11746-11752.	4.0	36
27	Frontispiece: Mechanisms of Solventâ€Mediated Structural Transformations for Dynamic Crystals of Supramolecular Coordination Systems. Chemistry - A European Journal, 2018, 24, .	3.3	Ο
28	Controlled Crystal Transformations of a Chiral Conglomerate with Heterotactic Helical Coordination Arrays. Crystal Growth and Design, 2018, 18, 4252-4256.	3.0	7
29	Mechanisms of Solventâ€Mediated Structural Transformations for Dynamic Crystals of Supramolecular Coordination Systems. Chemistry - A European Journal, 2018, 24, 13072-13077.	3.3	4
30	Structural Transformations Induced by Selective and Irreversible Anion Exchanges for a Layered Ag(I) Nitrite Coordination Polymer. Crystal Growth and Design, 2017, 17, 2024-2033.	3.0	16
31	Tracking the Superefficient Anion Exchange of a Dynamic Porous Material Constructed by Ag(I) Nitrate and Tripyridyltriazole via Multistep Single-Crystal to Single-Crystal Transformations. ACS Applied Materials & Interfaces, 2017, 9, 7202-7208.	8.0	38
32	A 2D Zn(II) metal-organic framework to show selective removal of Neutral Red (NR) from water. Inorganic Chemistry Communication, 2017, 80, 36-40.	3.9	10
33	Waterâ€Mediated Structural Transformations of Cu ^{II} 5â€Halonicotinates Coordination Networks with Distinct Mechanisms. Chemistry - A European Journal, 2017, 23, 12985-12990.	3.3	11
34	A nanoporous Ag(<scp>i</scp>) coordination polymer for selective adsorption of carcinogenic dye Acid Red 26. Chemical Communications, 2017, 53, 4767-4770.	4.1	71
35	Waterâ€Mediated Structural Transformations of Cu ^{II} 5â€Halonicotinates Coordination Networks with Distinct Mechanisms. Chemistry - A European Journal, 2017, 23, 12959-12959.	3.3	0
36	Highly efficient Cr ₂ O ₇ ^{2â^'} removal of a 3D metal-organic framework fabricated by tandem single-crystal to single-crystal transformations from a 1D coordination array. Chemical Communications, 2017, 53, 9206-9209.	4.1	65

#	Article	IF	CITATIONS
37	Anionâ€Directed Entangling Coordination Networks: Luminescence Sensing and Magnetic Properties. ChemPlusChem, 2016, 81, 857-863.	2.8	11
38	Dual structure evolution of a Ag(<scp>i</scp>) supramolecular framework triggered by anion-exchange: replacement of terminal ligand and switching of network interpenetration degree. Chemical Communications, 2016, 52, 11060-11063.	4.1	23
39	Interconvertible structural transformations between two Zn(II) interpenetrating coordination polymers. Inorganic Chemistry Communication, 2016, 71, 61-64.	3.9	3
40	Ligand Symmetry Modulation for Designing a Mesoporous Metal–Organic Framework: Dual Reactivity to Transition and Lanthanide Metals for Enhanced Functionalization. Chemistry - A European Journal, 2015, 21, 9713-9719.	3.3	59
41	Exceptional sensitivity to the synthetic approach and halogen substituent for Zn(ii) coordination assemblies with 5-halonicotinic acids. Dalton Transactions, 2015, 44, 11109-11118.	3.3	18
42	Anion-directed assembly of two AgI complexes based on 2,2'-(4H-1,2,4-triazole-3,4-diyl)dipyridine. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2015, 41, 695-700.	1.0	0
43	Anion-directed assembly and crystal transformation of Ag(I) coordination polymers with a versatile tripyridyltriazole ligand 3,4-bis(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole. Journal of Solid State Chemistry, 2015, 223, 95-103.	2.9	15
44	Pseudohalide anion directed assemblies of two Cull complexes based on 3-(2-pyridyl)-4,5-bis(3-pyridyl)-1,2,4-triazole. Transition Metal Chemistry, 2015, 40, 341-345.	1.4	1
45	Halide/pseudohalide-directed cadmium(II) coordination polymers based on 3-phenyl-5-(2-pyridyl)-4-(4-pyridyl)-4H-1,2,4-triazole. Polyhedron, 2015, 91, 104-109.	2.2	9
46	A porous metal–organic framework as active catalyst for multiple C–N/C–C bond formation reactions. Inorganic Chemistry Communication, 2015, 61, 13-15.	3.9	13
47	Fine-tuning on the structures of 3D Coll/5-methylnicotinate coordination polymers via three different synthetic approaches. Inorganic Chemistry Communication, 2015, 61, 160-164.	3.9	2
48	Dynamic structural transformations of coordination supramolecular systems upon exogenous stimulation. Chemical Communications, 2015, 51, 2768-2781.	4.1	104
49	Selfâ€assembly of Two 2D Copper(II) Coordination Networks with Tetrachloroâ€1,3â€benzenedicarboxylate: Solvent Effects, Supramolecular Interactions, and Luminescence Behavior. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1810-1815.	1.2	3
50	Solvent-mediated assembly of chiral/achiral hydrophilic Ca(<scp>ii</scp>)-tetrafluoroterephthalate coordination frameworks: 3D chiral water aggregation, structural transformation and selective CO ₂ adsorption. CrystEngComm, 2014, 16, 7673-7680.	2.6	28
51	3D pillared-layer coordination frameworks constructed from 4-(1,2,4-triazole)benzoic acid and different [M(HCOO)] n layers. Inorganic Chemistry Communication, 2014, 48, 94-98.	3.9	4
52	Structural diversity of 5-methylnicotinate coordination assemblies regulated by metal-ligating tendency and metal-dependent anion effect. CrystEngComm, 2014, 16, 6433.	2.6	18
53	Divergent Kinetic and Thermodynamic Hydration of a Porous Cu(II) Coordination Polymer with Exclusive CO ₂ Sorption Selectivity. Journal of the American Chemical Society, 2014, 136, 10906-10909.	13.7	227
54	Structural diversity and fluorescent properties of CdII coordination polymers with 5-halonicotinates regulated by solvent and ligand halogen-substituting effect. CrystEngComm, 2013, 15, 9713.	2.6	30

#	Article	IF	CITATIONS
55	Ligand-directed assembly of distinct 1-D Cd ^{II} coordination polymers with a bent dipyridyl derivative and two isophthalates bearing different 5-substituents. Journal of Coordination Chemistry, 2013, 66, 2012-2022.	2.2	10
56	Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coordination Chemistry Reviews, 2013, 257, 1282-1305.	18.8	722
57	Solvent-regulated assemblies of silver(I) and cadmium(II) supramolecular complexes with versatile tripyridyltriazole multidentate ligands. Inorganica Chimica Acta, 2013, 395, 212-217.	2.4	11
58	Three distinct cadmium coordination polymers with a multidentate tripyridyl-substituted triazole tecton regulated by halide anions. Journal of Molecular Structure, 2013, 1051, 259-264.	3.6	2
59	Distinct 2-D and 3-D Co(II) coordination polymers with 5-bromonicotinate induced by different synthetic approaches. Inorganic Chemistry Communication, 2013, 36, 105-108.	3.9	10
60	Two 3D open coordination frameworks constructed by Cdll or Znll perchlorate and 4-(4-pyridyl)-3,5-bis(2-pyridyl)-1,2,4-triazole showing selective anion-exchange behaviors to acetate. Inorganic Chemistry Communication, 2013, 38, 70-73.	3.9	9
61	Exceptional Crystallization Diversity and Solidâ€State Conversions of Cd ^{II} Coordination Frameworks with 5â€Bromonicotinate Directed by Solvent Media. Chemistry - A European Journal, 2012, 18, 12437-12445.	3.3	60
62	A 3-D metal–organic framework of CuII perchlorate and 2-(2-pyridyl)-5-(4-pyridyl)-1,3,4-oxadiazole showing the exclusive anion-exchange selectivity to benzoate. Inorganic Chemistry Communication, 2012, 15, 172-175.	3.9	15
63	Co ^{II} and Zn ^{II} Coordination Frameworks with Benzene-1,2,3-tricarboxylate Tecton and Flexible Dipyridyl Co-Ligand: A New Type of Entangled Architecture and a Unique 4-Connected Topological Network. Crystal Growth and Design, 2011, 11, 3309-3312.	3.0	41
64	Syntheses, Crystal Structures, and Thermal Stability of Metal-Directed Co(II) and Cu(II) Coordination Assemblies with Mixed Ligands of 5-Methylisophthalic Acid and 2,5-Bis(4-Pyridyl)-1,3,4-Oxadiazole. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 676-682.	0.6	0
65	A 3D Cu ^{II} Coordination Framework with μ ₄ -/μ ₂ -Oxalato Anions and a Bent Dipyridyl Coligand: Unique Zeolite-Type NiP ₂ Topological Network and Magnetic Properties. Inorganic Chemistry, 2011, 50, 6850-6852.	4.0	31
66	Substituent effect of R-isophthalates (R = –H, –CH3, –OCH3, –tBu, –OH, and –NO2) on the construction of CdIIcoordination polymers incorporating a dipyridyl tecton 2,5-bis(3-pyridyl)-1,3,4-oxadiazole. CrystEngComm, 2011, 13, 1885-1893.	2.6	84
67	Coordination polymers of macrocyclic oxamide with 1,3,5-benzenetricarboxylate: syntheses, crystal structures and magnetic properties. Dalton Transactions, 2011, 40, 5528.	3.3	21
68	Role of solvents in coordination supramolecular systems. Chemical Communications, 2011, 47, 5958.	4.1	624
69	Destruction and reconstruction of the robust [Cu2(OOCR)4] unit during crystal structure transformations between two coordination polymers. Chemical Communications, 2011, 47, 8088.	4.1	84
70	Inducing Effect of Additive Agents on Coordination Assembly of Silver(I) Nitrate with 3,5-Bis(2-pyridyl)-4-amino-1,2,4-triazole: Supramolecular Isomerism and Interconversion. Inorganic Chemistry, 2011, 50, 9284-9289.	4.0	70
71	Cadmium(II) and zinc(II) coordination polymers with mixed building blocks of benzenedicarboxyl and 2,5-bipyridyl-1,3,4-oxadiazole: Syntheses, crystal structures, and properties. Inorganica Chimica Acta, 2011, 378, 206-212.	2.4	8
72	Recent advances in CdII coordination polymers: Structural aspects, adaptable assemblies, and potential applications. Inorganic Chemistry Communication, 2011, 14, 502-513.	3.9	57

#	Article	IF	CITATIONS
73	Di-μ-chlorido-bis{[4-amino-3,5-bis(2-pyridyl)-4H-1,2,4-triazole-κN1]chloridomercury(II)}. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1180-m1180.	0.2	2
74	3,4-Bis(2-pyridyl)-5-(3-pyridyl)-4H-1,2,4-triazole. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1189-o1189.	0.2	1
75	2,5-Bis(5-methylpyrazin-2-yl)-1,3,4-oxadiazole. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, 01416-01416.	0.2	Ο
76	trans-Bis[4-amino-3,5-bis(2-pyridyl)-4H-1,2,4-triazole-κN3]diaquacobalt(II) bis(3-carboxy-5-nitrobenzoate). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1344-m1345.	0.2	0
77	Coordination Assemblies of Co ^{II} /Cu ^{II} /Zn ^{II} /Cd ^{II} with 2,5-Bipyridyl-1,3,4-Oxadiazole and Dicyanamide Anion: Structural Diversification and Properties. Crystal Growth and Design, 2010, 10, 3285-3296.	3.0	36
78	Zn(II) and Cd(II) Coordination Polymers Assembled from a Versatile Tecton 5-Nitro-1,2,3-benzenetricarboxylic Acid and <i>N</i> , <i>N</i> ′-Donor Ancillary Coligands. Crystal Growth and Design, 2010, 10, 2641-2649.	3.0	87
79	Cull, Coll, and Nill complexes with R-isophthalate (R=–CH3 or –OCH3) and a bent dipyridyl 2,5-bis(3-pyridyl)-1,3,4-oxadiazole: Structural diversification induced by metal ion and substituent of ligand. Journal of Molecular Structure, 2010, 975, 147-153.	3.6	15
80	Mixed-ligand metallosupramolecular complexes with Brn-terephthalic acid (n=1 or 4) and a versatile bent dipyridyl tecton: Structural modulation by substituent effect of the ligand and metal ion. Polyhedron, 2010, 29, 463-469.	2.2	18
81	Structural diversification and metal-directed assembly of coordination architectures based on tetrabromoterephthalic acid and a bent dipyridyl tecton 2,5-bis(4-pyridyl)-1,3,4-oxadiazole. CrystEngComm, 2010, 12, 4392.	2.6	39
82	An Unprecedented Eight-Connected Self-Penetrating Coordination Framework Based on Cage-Shaped [Pb ₆ (μ4 ₄ -O) ₂ (O ₂ C) ₈] Clusters. Crystal Growth and Design, 2010, 10, 2037-2040.	3.0	127
83	Delicate Substituent Effect of Benzene-1,2,3-Tricarboxyl Tectons on Structural Assembly of Unusual Self-Penetrating Coordination Frameworks. Crystal Growth and Design, 2010, 10, 3036-3043.	3.0	107
84	Metal-Involved Solvothermal Interconversions of Pyrazinyl Substituted Azole Derivatives: Controllability and Mechanism. Crystal Growth and Design, 2010, 10, 5034-5042.	3.0	38
85	Supramolecular Coordination Complexes with 5-Sulfoisophthalic Acid and 2,5-Bipyridyl-1,3,4-Oxadiazole: Specific Sensitivity to Acidity for Cd(II) Species. Crystal Growth and Design, 2010, 10, 2650-2660.	3.0	96
86	Structural Modulation and Properties of Silver(I) Coordination Frameworks with Benzenedicarboxyl Tectons and <i>trans</i> -1-(2-Pyridyl)-2-(4-pyridyl)ethylene Spacer. Crystal Growth and Design, 2010, 10, 1623-1632.	3.0	59
87	Multifarious ZnII and CdII coordination frameworks constructed by a versatile trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene tecton and various benzenedicarboxyl ligands. CrystEngComm, 2010, 12, 834-844.	2.6	30
88	Copper(ii) 5-methoxyisophthalate coordination polymers incorporating dipyridyl co-ligands: syntheses, crystal structures, and magnetic properties. Dalton Transactions, 2010, 39, 2301.	3.3	87
89	Structural modulation of Cd(II) supramolecular frameworks with a versatile 2,4-dipyridyl-type building block and different dicarboxylate ligands. Science in China Series B: Chemistry, 2009, 52, 1470-1478.	0.8	11
90	Cobalt(II), silver(I), and lead(II) tetrabromoterephthalates exhibiting the 1-D linear chain, 2-D CdCl2-type layer, and 3-D penta-nodal mixed-connecting coordination frameworks. Polyhedron, 2009, 28, 505-510.	2.2	19

#	Article	IF	CITATIONS
91	Mixed-ligand complexes with trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene terminal and different aromatic polycarboxyl linkers: Synergistic modulation of metallosupramolecular architectures via coordinative and secondary interactions. Polyhedron, 2009, 28, 2347-2354.	2.2	6
92	Novel HgII and MnII supramolecular complexes with a versatile building block 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiolate involving in situ ligand formation. Inorganic Chemistry Communication, 2009, 12, 1038-1041.	3.9	6
93	Unusual anion effect on the direction of three-dimensional (3-D) channel-like silver(I) coordination frameworks with isonicotinic acid N-oxide. CrystEngComm, 2009, 11, 1536.	2.6	55
94	{[Cd2(pyt)2(chdc)(H2O)](H2O)2}n: A unique bilayer coordination polymer with mixed-connected network topology (Hpyt=5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol and H2chdc=1,4-cyclohexanedicarboxylic) Tj ETQc	0 3.0 rgB1	- /Querlock 10
95	Solvent-regulated assembly of 1-D and 2-D ZnII coordination polymers with tetrabromoterephthalate. Inorganic Chemistry Communication, 2008, 11, 1405-1408.	3.9	42
96	Interplay of coordinative and supramolecular interactions in engineering unusual crystalline architectures of low-dimensional metal–pamoate complexes under co-ligand intervention. CrystEngComm, 2007, 9, 1011.	2.6	73
97	New supramolecular complexes generated from MnII, FeII, CoII, ZnII, FeIII with a bent dipyridyl ligand: Metal- and anion-directed assembly. Inorganica Chimica Acta, 2007, 360, 2169-2174.	2.4	8
98	Bis(2,5-di-4-pyridyl-1,3,4-oxadiazole)silver(I) nitrate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m3044-m3044.	0.2	1
99	Hierarchical regulated assembly of new metallosupramolecular networks based on metal thiocyanate and trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (bpe)via multiple interactions. CrystEngComm, 2006, 8, 552.	2.6	36
100	Metal-Controlled Assembly of Coordination Polymers with the Flexible Building Block 4-Pyridylacetic Acid (Hpya). Crystal Growth and Design, 2006, 6, 335-341.	3.0	83
101	Configuration flexibility of 2,5-bis(3-pyridyl)-1,3,4-oxadiazole in controllable cocrystallization with 3-hydroxybenzoic acid. Journal of Molecular Structure, 2006, 791, 131-136.	3.6	4
102	Metal-directed 1-D molecular-box based coordination polymers with mono- and di-nuclear nodes – Construction of 3-D supramolecular networks via hydrogen bonding and Sâ<⁻S interactions. Inorganica Chimica Acta, 2006, 359, 1690-1696.	2.4	22
103	Distinct Cdll and Coll thiocyanate coordination complexes with 2,5-bis(pyrazinyl)-1,3,4-oxadiazole: Metal-directed assembly of a 1-D polymeric chain and a 3-D supramolecular network. Inorganica Chimica Acta, 2006, 359, 2575-2582.	2.4	36
104	2,5-Bis(4-pyridyl)-1,3,4-thiadiazole. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o706-o707.	0.2	4
105	Multistimuli-Responsive Fluorescent Switches Based on Reversible Decomposition and Regeneration of charge-transfer Complexes. Crystal Growth and Design, 0, , .	3.0	2