Craig A Sable

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5649259/publications.pdf

Version: 2024-02-01

48315 147801 8,800 112 31 88 citations h-index g-index papers 117 117 117 7562 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. Journal of the American College of Cardiology, 2020, 76, 2982-3021.	2.8	4,468
2	Global, Regional, and National Burden of Rheumatic Heart Disease, 1990–2015. New England Journal of Medicine, 2017, 377, 713-722.	27.0	771
3	Revision of the Jones Criteria for the Diagnosis of Acute Rheumatic Fever in the Era of Doppler Echocardiography. Circulation, 2015, 131, 1806-1818.	1.6	515
4	Acute rheumatic fever and rheumatic heart disease. Nature Reviews Disease Primers, 2016, 2, 15084.	30.5	371
5	Echocardiography Screening for Rheumatic Heart Disease in Ugandan Schoolchildren. Circulation, 2012, 125, 3127-3132.	1.6	210
6	Three-Dimensional Printing of Intracardiac Defects from Three-Dimensional Echocardiographic Images: Feasibility and Relative Accuracy. Journal of the American Society of Echocardiography, 2015, 28, 392-397.	2.8	164
7	Impact of Telemedicine on the Practice of Pediatric Cardiology in Community Hospitals. Pediatrics, 2002, 109, e3-e3.	2.1	129
8	Handheld echocardiographic screening for rheumatic heart disease by non-experts. Heart, 2016, 102, 35-39.	2.9	104
9	The Utility of Handheld Echocardiography for Early Diagnosis of Rheumatic Heart Disease. Journal of the American Society of Echocardiography, 2014, 27, 42-49.	2.8	98
10	Differences in the clinical and genotypic presentation of sickle cell disease around the world. Paediatric Respiratory Reviews, 2014, 15, 4-12.	1.8	97
11	The utility of handheld echocardiography for early rheumatic heart disease diagnosis: a field study. European Heart Journal Cardiovascular Imaging, 2015, 16, 475-482.	1.2	96
12	Coronary Artery Z Score Regression Equations and Calculators Derived From a Large Heterogeneous Population of Children Undergoing Echocardiography. Journal of the American Society of Echocardiography, 2009, 22, 159-164.	2.8	75
13	Secondary Antibiotic Prophylaxis for Latent Rheumatic Heart Disease. New England Journal of Medicine, 2022, 386, 230-240.	27.0	75
14	Risk-Stratified Postnatal Care of Newborns with Congenital Heart Disease Determined by Fetal Echocardiography. Journal of the American Society of Echocardiography, 2015, 28, 1339-1349.	2.8	68
15	Telemedicine in Pediatric Cardiology: A Scientific Statement From the American Heart Association. Circulation, 2017, 135, e648-e678.	1.6	66
16	Simplified Rheumatic Heart Disease Screening Criteria for Handheld Echocardiography. Journal of the American Society of Echocardiography, 2015, 28, 463-469.	2.8	64
17	Echocardiographic prevalence of rheumatic heart disease in Brazilian schoolchildren: Data from the PROVAR study. International Journal of Cardiology, 2016, 219, 439-445.	1.7	64
18	Impact of Telemedicine on Hospital Transport, Length of Stay, and Medical Outcomes in Infants with Suspected Heart Disease: A Multicenter Study. Journal of the American Society of Echocardiography, 2013, 26, 1090-1098.	2.8	63

#	Article	IF	Citations
19	Handheld Echocardiography Versus Auscultation for Detection of Rheumatic Heart Disease. Pediatrics, 2015, 135, e939-e944.	2.1	63
20	Live Transmission of Neonatal Echocardiograms from Underserved Areas: Accuracy, Patient Care, and Cost. Telemedicine and E-Health, 1999, 5, 339-347.	1.3	60
21	Latent Rheumatic Heart Disease. Circulation, 2017, 136, 2233-2244.	1.6	56
22	Digital Echocardiography and Telemedicine Applications in Pediatric Cardiology. Pediatric Cardiology, 2002, 23, 358-369.	1.3	48
23	Simplified Echocardiography Screening Criteria for Diagnosing and Predicting Progression of Latent Rheumatic Heart Disease. Circulation: Cardiovascular Imaging, 2019, 12, e007928.	2.6	46
24	Efficacy of a Standardized Computer-Based Training Curriculum to Teach Echocardiographic Identification of Rheumatic Heart Disease to Nonexpert Users. American Journal of Cardiology, 2016, 117, 1783-1789.	1.6	44
25	Integration of echocardiographic screening by non-physicians with remote reading in primary care. Heart, 2019, 105, 283-290.	2.9	40
26	Impact of heart disease on maternal, fetal and neonatal outcomes in a low-resource setting. Heart, 2019, 105, 755-760.	2.9	40
27	Comparison Between Different Strategies of Rheumatic Heart Disease Echocardiographic Screening in Brazil: Data From the PROVAR (Rheumatic Valve Disease Screening Program) Study. Journal of the American Heart Association, 2018, 7, .	3.7	39
28	Rheumatic Heart Disease Treatment Cascade in Uganda. Circulation: Cardiovascular Quality and Outcomes, $2017,10,.$	2.2	38
29	Telehealth solutions to enable global collaboration in rheumatic heart disease screening. Journal of Telemedicine and Telecare, 2018, 24, 101-109.	2.7	36
30	Case report: pulmonary vein stenosis following RF ablation of paroxysmal atrial fibrillation: successful treatment with balloon dilation. Journal of Interventional Cardiac Electrophysiology, 2000, 4, 621-631.	1.3	35
31	School and Community Screening Shows Malawi, Africa, to Have a High Prevalence of Latent Rheumatic Heart Disease. Congenital Heart Disease, 2016, 11, 615-621.	0.2	34
32	Predictive Models for Normal Fetal Cardiac Structures. Journal of the American Society of Echocardiography, 2016, 29, 1197-1206.	2.8	29
33	Pulmonary artery pressure and iron deficiency in patients with upregulation of hypoxia sensing due to homozygous VHLR200W mutation (Chuvash polycythemia). Haematologica, 2012, 97, 193-200.	3.5	26
34	Using a Low-Risk Population to Estimate the Specificity of the World Heart Federation Criteria forÂthe Diagnosis of Rheumatic Heart Disease. Journal of the American Society of Echocardiography, 2016, 29, 253-258.	2.8	26
35	Determining the impact of Benzathine penicillin G prophylaxis in children with latent rheumatic heart disease (GOAL trial): Study protocol for a randomized controlled trial. American Heart Journal, 2019, 215, 95-105.	2.7	24
36	A focussed single-view hand-held echocardiography protocol for the detection of rheumatic heart disease. Cardiology in the Young, 2018, 28, 108-117.	0.8	23

#	Article	IF	CITATIONS
37	Towards automatic diagnosis of rheumatic heart disease on echocardiographic exams through video-based deep learning. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1834-1842.	4.4	23
38	Community study to uncover the full spectrum of rheumatic heart disease in Uganda. Heart, 2019, 105, 60-66.	2.9	22
39	Targeted Echocardiographic Screening for Latent Rheumatic Heart Disease in Northern Uganda: Evaluating Familial Risk Following Identification of an Index Case. PLoS Neglected Tropical Diseases, 2016, 10, e0004727.	3.0	22
40	Pediatric cardiovascular care in Uganda. Annals of Pediatric Cardiology, 2017, 10, 50-57.	0.5	22
41	Prevalence of group A \hat{I}^2 -hemolytic streptococcal throat carriage and prospective pilot surveillance of streptococcal sore throat in Ugandan school children. International Journal of Infectious Diseases, 2020, 93, 245-251.	3.3	21
42	Rheumatic Heart Disease in the United States: Forgotten But Not Gone. Journal of the American Heart Association, 2021, 10, e020992.	3.7	21
43	Congenital heart disease in lowâ€andâ€middleâ€income countries: Focus on subâ€Saharan Africa. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 36-46.	1.6	19
44	Tricuspid regurgitation velocity and other biomarkers of mortality in children, adolescents and young adults with sickle cell disease in the United States: The <scp>PUSH</scp> study. American Journal of Hematology, 2020, 95, 766-774.	4.1	19
45	The impact of a peer support group for children with rheumatic heart disease in Uganda. Patient Education and Counseling, 2018, 101, 119-123.	2.2	18
46	Noncoronary Inflammation in Kawasaki Disease is Associated with Abnormal Myocardial Deformation in the Acute Phase. Journal of the American Society of Echocardiography, 2014, 27, 1329-1335.	2.8	17
47	The Evolution of Pediatric Tele-echocardiography: 15-Year Experience of Over 10,000 Transmissions. Telemedicine Journal and E-Health, 2014, 20, 681-686.	2.8	17
48	Incidence of acute rheumatic fever in northern and western Uganda: a prospective, population-based study. The Lancet Global Health, 2021, 9, e1423-e1430.	6.3	16
49	Novel Uses for Three-Dimensional Printing in Congenital Heart Disease. Current Pediatrics Reports, 2016, 4, 28-34.	4.0	15
50	Impact of regionalisation of a national rheumatic heart disease registry: the Ugandan experience. Heart Asia, 2018, 10, e010981.	1.1	15
51	Improving the accuracy of heart failure diagnosis in low-resource settings through task sharing and decentralization. Global Health Action, 2019, 12, 1684070.	1.9	15
52	Cardiac echocardiogram findings of severe acute respiratory syndrome coronavirus-2-associated multi-system inflammatory syndrome in children. Cardiology in the Young, 2021, , 1-9.	0.8	14
53	The Impact of Echocardiographic Screening for Rheumatic Heart Disease on Patient Quality of Life. Journal of Pediatrics, 2016, 175, 123-129.	1.8	13
54	Task shifting to clinical officer-led echocardiography screening for detecting rheumatic heart disease in Malawi, Africa. Cardiology in the Young, 2017, 27, 1133-1139.	0.8	13

#	Article	IF	Citations
55	Genetic susceptibility to endomyocardial fibrosis. Global Cardiology Science & Practice, 2014, 2014, 60.	0.4	12
56	Active Case Finding for Rheumatic Fever in an Endemic Country. Journal of the American Heart Association, 2020, 9, e016053.	3.7	12
57	Clinical outcomes of children with rheumatic heart disease. Heart, 2022, 108, 633-638.	2.9	12
58	Reducing rheumatic heart disease in Africa — time for action. Nature Reviews Cardiology, 2016, 13, 190-191.	13.7	11
59	Echocardiographic screening of 4107 Nigerian school children for rheumatic heart disease. Tropical Medicine and International Health, 2019, 24, 757-765.	2.3	11
60	Ambulatory Cardiology Telemedicine: A Large Academic Pediatric Center Experience. Journal of Investigative Medicine, 2021, 69, 1372-1376.	1.6	11
61	Twoâ€year evolution of latent rheumatic heart disease in Malawi. Congenital Heart Disease, 2019, 14, 614-618.	0.2	10
62	Validation of a simplified score for predicting latent rheumatic heart disease progression using a prospective cohort of Brazilian schoolchildren. BMJ Open, 2020, 10, e036827.	1.9	10
63	Novel handheld ultrasound technology to enhance nonâ€expert screening for rheumatic heart disease in the Republic of Palau: A descriptive study. Journal of Paediatrics and Child Health, 2021, 57, 1089-1095.	0.8	10
64	Examining the Ugandan health system's readiness to deliver rheumatic heart disease-related services. PLoS Neglected Tropical Diseases, 2021, 15, e0009164.	3.0	10
65	Single-Ventricle Palliation in Low- and Middle-Income Countries. Journal of the American College of Cardiology, 2019, 74, 928-931.	2.8	9
66	Cardiac Involvement by Yellow Fever(from the PROVAR+ Study). American Journal of Cardiology, 2019, 123, 833-838.	1.6	9
67	Pattern of congenital heart disease among children presenting to the Uganda Heart Institute, Mulago Hospital: a 7-year review. African Health Sciences, 2020, 20, 745-752.	0.7	9
68	The inter-rater reliability and individual reviewer performance of the 2012 world heart federation guidelines for the echocardiographic diagnosis of latent rheumatic heart disease. International Journal of Cardiology, 2021, 328, 146-151.	1.7	9
69	Establishment of a cardiac telehealth program to support cardiovascular diagnosis and care in a remote, resource-poor setting in Uganda. PLoS ONE, 2021, 16, e0255918.	2.5	9
70	Expanding Access to Fetal Telecardiology During the COVID-19 Pandemic. Telemedicine Journal and E-Health, 2021, 27, 1235-1240.	2.8	9
71	Bedside echocardiography to predict mortality of COVID-19 patients beyond clinical data: Data from the PROVAR-COVID study. Revista Da Sociedade Brasileira De Medicina Tropical, 2021, 54, e03822021.	0.9	8
72	Outcomes of Echocardiographyâ€Detected Rheumatic Heart Disease: Validating a Simplified Score in Cohorts From Different Countries. Journal of the American Heart Association, 2021, 10, e021622.	3.7	8

#	Article	IF	CITATIONS
73	The personal and clinical impact of screen-detected maternal rheumatic heart disease in Uganda: a prospective follow up study. BMC Pregnancy and Childbirth, 2020, 20, 611.	2.4	6
74	Pulse Oximetry and Congenital Heart Disease Screening: Results of the First Pilot Study in Morocco. International Journal of Neonatal Screening, 2020, 6, 53.	3.2	6
75	Congenital heart disease in school children in Lagos, Nigeria: Prevalence and the diagnostic gap. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 47-52.	1.6	6
76	Child and teacher acceptability of school-based echocardiographic screening for rheumatic heart disease in Uganda. Cardiology in the Young, 2017, 27, 82-89.	0.8	5
77	Interpretation errors in focused cardiac ultrasound by novice pediatric emergency medicine fellow sonologists. The Ultrasound Journal, 2018, 10, 33.	2.0	5
78	Atrial fibrillation detection with a portable device during cardiovascular screening in primary care. Heart, 2020, 106, 1261-1266.	2.9	5
79	Evaluation of a Second-Generation Microtransesophageal Echocardiography Transducer and Software. World Journal for Pediatric & Software. World Journal for Pediatric & Software. World Journal for Pediatric & Software.	0.8	4
80	Cardiac strain findings in children with latent rheumatic heart disease detected by echocardiographic screening. Cardiology in the Young, 2017, 27, 1180-1185.	0.8	4
81	Impact of incorporating echocardiographic screening into a clinical prediction model to optimise utilisation of echocardiography in primary care. International Journal of Clinical Practice, 2021, 75, e13686.	1.7	4
82	Previous Traditional Medicine Use for Sore Throat among Children Evaluated for Rheumatic Fever in Northern Uganda. American Journal of Tropical Medicine and Hygiene, 2021, 104, 842-847.	1.4	4
83	Amino-terminal pro-brain natriuretic peptide in children with latent rheumatic heart disease. Annals of Pediatric Cardiology, 2016, 9, 120.	0.5	4
84	Pulmonary Artery Hypertension in Children with Sickle Cell Disease: Is Chronic Transfusion Protective? Blood, 2006, 108, 1210-1210.	1.4	4
85	Ultrasound of congenital heart disease: a review of prenatal and postnatal echocardiography. Seminars in Roentgenology, 2004, 39, 215-33.	0.6	4
86	Modelling study of the ability to diagnose acute rheumatic fever at different levels of the Ugandan healthcare system. BMJ Open, 2022, 12, e050478.	1.9	4
87	Investigation of the Familial Risk of Rheumatic Heart Disease with Systematic Echocardiographic Screening: Data from the PROVAR+ Family Study. Pathogens, 2022, 11, 139.	2.8	3
88	Update on Prevention and Management of Rheumatic Heart Disease. Pediatric Clinics of North America, 2020, 67, 843-853.	1.8	2
89	Determining the Risk of Developing Rheumatic Heart Disease Following a Negative Screening Echocardiogram. Frontiers in Cardiovascular Medicine, 2021, 8, 632621.	2.4	2
90	Diagnosing rheumatic heart disease: where are we now and what are the challenges? Expert Review of Cardiovascular Therapy, 2021, 19, 777-786.	1.5	2

#	Article	IF	Citations
91	Plasma Level of NT-Pro-BNP In Children with Sickle Cell Disease Is Associated with Degree of Anemia and Left Ventricular Measures: The PUSH Study. Blood, 2010, 116, 948-948.	1.4	2
92	Cardiac involvement in COVID-19: cause or consequence of severe manifestations?. Heart, 2022, 108, heartjnl-2021-320246.	2.9	2
93	Pulmonary Function Tests and Their Correlation with Tricuspid Regurgitant Jet Velocity in Pediatric Sickle Cell Disease Patients Blood, 2007, 110, 2262-2262.	1.4	2
94	Prospective Evaluation of the Prevalence of Elevated Tricuspid Regurgitant Jet Velocity and Associated Clinical and Echocardiographic Factors in Children and Adolescents with Sickle Cell Disease Blood, 2007, 110, 3388-3388.	1.4	2
95	Correlations Between Cytokines and Elevated Tricuspid Regurgitant Jet Velocity in Children and Adolescents with Sickle Cell Disease. Blood, 2008, 112, 2484-2484.	1.4	2
96	Effects of blood pressure percentile, body mass index, and race on left ventricular mass in children. Cardiology in the Young, 2022, 32, 855-860.	0.8	2
97	Influence of single parenthood on cardiopulmonary function in pediatric patients with sickle cell anemia. Blood Advances, 2020, 4, 3311-3314.	5.2	1
98	Cytochrome b5 Reductase T116S Mutation and Hemolysis in Sickle Cell Disease Blood, 2009, 114, 903-903.	1.4	1
99	Predictors of Mortality in Children and Adolescents with Sickle Cell Disease: The PUSH Study. Blood, 2011, 118, 515-515.	1.4	1
100	High prevalence of truncus arteriosus in pediatric congenital heart disease in Uganda. Annals of Pediatric Cardiology, 2019, 12, 186.	0.5	1
101	Epidemiology and Risk Factors for Pain In Children and Adolescent with Sickle Cell Anemia Blood, 2010, 116, 1651-1651.	1.4	1
102	Novel Putative Polymorphism in SERPINC1 Encoding Antithrombin III Is Implicated in Elevated Estimated Systolic Pulmonary Pressure in Patients with Chuvash Polycythemia Blood, 2012, 120, 2869-2869.	1.4	1
103	Fever, Neck Stiffness, and Leg Pain in a 6-year-old Boy. Pediatrics in Review, 2021, 42, 463-467.	0.4	0
104	Association of Hemolysis with Clinical Manifestations of Sickle Cell Disease. Blood, 2008, 112, 2482-2482.	1.4	0
105	Lower Ferritin Concentrations in Children with Sickle Cell Disease Are Associated with Decreased Hemolysis and Lower Tricuspid Regurgitant Velocity. Blood, 2008, 112, 4810-4810.	1.4	0
106	Oxygen Desaturation at Rest and after Exercise in Pediatric Sickle Cell Disease Patients: Correlations with Hemolysis and Elevated Tricuspid Regurgitant Jet Velocity Blood, 2008, 112, 1423-1423.	1.4	0
107	Effect of Phlebotomy Therapy On Hemoglobin Concentration and Tricuspid Regurgitation Velocity in Chuvash Polycythemia Blood, 2009, 114, 1897-1897.	1.4	0
108	Hemolysis-Associated Elevation in Tricuspid Regurgitation Velocity Predicts Reduction in Six-Minute Walk Distance After Two Years of Follow up in Children and Adolescents with Sickle Cell Disease Blood, 2009, 114, 574-574.	1.4	0

#	Article	IF	CITATIONS
109	Evaluation of Exercise Capacity In Children with SCD by Six Minute Walk Test. Blood, 2010, 116, 2664-2664.	1.4	0
110	Abstract 18513: School-based Rheumatic Heart Disease Education Results in Improved Knowledge - Data From the PROVAR Study. Circulation, 2015, 132, .	1.6	0
111	Abstract 16727: Cardiac Complications of SARS CoV-2 Associated Multi-System Inflammatory Syndrome in Children (mis-c). Circulation, 2020, 142, .	1.6	O
112	Abstract 18614: Rheumatic Heart Disease Screening in Schools Through Portable Echocardiography: Data From the PROVAR Study. Circulation, 2015, 132, .	1.6	O