Sandro Francesco Tedde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5649115/publications.pdf

Version: 2024-02-01

567281 839539 2,315 19 15 18 citations g-index h-index papers 19 19 19 3329 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photonics, 2009, 3, 332-336.	31.4	598
2	High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nature Photonics, 2017, 11, 436-440.	31.4	442
3	X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nature Photonics, 2015, 9, 843-848.	31.4	300
4	Fully Spray Coated Organic Photodiodes. Nano Letters, 2009, 9, 980-983.	9.1	219
5	High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nature Communications, 2018, 9, 2926.	12.8	166
6	High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nature Electronics, 2021, 4, 681-688.	26.0	149
7	Topographical and morphological aspects of spray coated organic photovoltaics. Organic Electronics, 2009, 10, 587-593.	2.6	99
8	Sprayâ€Coated Organic Photodetectors and Image Sensors with Siliconâ€Like Performance. Advanced Materials Technologies, 2019, 4, 1800158.	5.8	83
9	A perspective on the bright future of metal halide perovskites for X-ray detection. Applied Physics Letters, 2019, 115, .	3.3	45
10	High Performance All-Polymer Photodetector Comprising a Donor–Acceptor–Acceptor Structured Indacenodithiophene–Bithieno[3,4- <i>c</i>)Pyrroletetrone Copolymer. ACS Macro Letters, 2018, 7, 395-400.	4.8	43
11	High-Performance Organic Photodetectors from a High-Bandgap Indacenodithiophene-Based π-Conjugated Donor–Acceptor Polymer. ACS Applied Materials & Interfaces, 2018, 10, 12937-12946.	8.0	42
12	Millimeter-Scale Unipolar Transport in High Sensitivity Organic–Inorganic Semiconductor X-ray Detectors. ACS Nano, 2019, 13, 6973-6981.	14.6	30
13	Selfâ∈Healing Cs ₃ Bi ₂ Br ₃ I ₆ Perovskite Wafers for Xâ∈Ray Detection. Advanced Functional Materials, 2021, 31, 2102713.	14.9	29
14	TIPS Pentacene as a Beneficial Interlayer for Organic Photodetectors in Imaging Applications. IEEE Transactions on Electron Devices, 2018, 65, 1516-1522.	3.0	25
15	Improving spray coated organic photodetectors performance by using 1,8-diiodooctane as processing additive. Organic Electronics, 2018, 54, 21-26.	2.6	21
16	Mobile Ion-Driven Modulation of Electronic Conductivity Explains Long-Timescale Electrical Response in Lead Iodide Perovskite Thick Pellets. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35617-35624.	8.0	14
17	Monitoring fluorescent calcium signals in neural cells with organic photodetectors. Journal of Materials Chemistry C, 2019, 7, 9049-9056.	5.5	7
18	Organometal halide perovskite imager: a comparison 1.5 years after fabrication., 2022,,.		2

#	Article	IF	CITATIONS
19	Laser Cutting of Metalâ€Halideâ€Perovskite Wafers for Xâ€Ray Detector Integration. Advanced Materials Interfaces, 2022, 9, .	3.7	1