
Guan-Zheng Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5649101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping single-nucleotide m6A by m6A-REF-seq. Methods, 2022, 203, 392-398.	3.8	3
2	Long noncoding RNA <i>lnc-NAP</i> sponges mmu-miR-139-5p to modulate <i>Nanog</i> functions in mouse ESCs and embryos. RNA Biology, 2021, 18, 875-887.	3.1	6
3	RNA m6A Modification Functions in Larval Development and Caste Differentiation in Honeybee (Apis) Tj ETQq1 1	0.784314 6.4	rgBT /Overl
4	The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature, 2021, 591, 322-326.	27.8	187
5	Targeted RNA <i>N</i> ⁶ â€Methyladenosine Demethylation Controls Cell Fate Transition in Human Pluripotent Stem Cells. Advanced Science, 2021, 8, e2003902.	11.2	20
6	The Impact of Microbiome and Microbiota-Derived Sodium Butyrate on Drosophila Transcriptome and Metabolome Revealed by Multi-Omics Analysis. Metabolites, 2021, 11, 298.	2.9	13
7	Targeted genetic screening in bacteria with a Cas12k-guided transposase. Cell Reports, 2021, 36, 109635.	6.4	24
8	Establishment of transposase-assisted low-input m6A sequencing technique. Journal of Genetics and Genomics, 2021, 48, 1036-1039.	3.9	1
9	Systematic calibration of epitranscriptomic maps using a synthetic modification-free RNA library. Nature Methods, 2021, 18, 1213-1222.	19.0	44
10	Crystal structure of the yeast heterodimeric ADAT2/3 deaminase. BMC Biology, 2020, 18, 189.	3.8	20
11	Mapping and editing of nucleic acid modifications. Computational and Structural Biotechnology Journal, 2020, 18, 661-667.	4.1	15
12	Peroxisome Elevation Induces Stem Cell Differentiation and Intestinal Epithelial Repair. Developmental Cell, 2020, 53, 169-184.e11.	7.0	33
13	Keth-seq for transcriptome-wide RNA structure mapping. Nature Chemical Biology, 2020, 16, 489-492.	8.0	72
14	Single-base mapping of m ⁶ A by an antibody-independent method. Science Advances, 2019, 5, eaax0250.	10.3	270
15	Acute Deletion of METTL14 in β-Cells of Adult Mice Results in Glucose Intolerance. Endocrinology, 2019, 160, 2388-2394.	2.8	24
16	METTL14 is essential for β-cell survival and insulin secretion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2138-2148.	3.8	54
17	Transcriptome-wide Mapping of Internal N7-Methylguanosine Methylome in Mammalian mRNA. Molecular Cell, 2019, 74, 1304-1316.e8.	9.7	276
18	Transcriptome-wide reprogramming of N6-methyladenosine modification by the mouse microbiome. Cell Research, 2019, 29, 167-170.	12.0	38

GUAN-ZHENG LUO

#	Article	IF	CITATIONS
19	Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Research, 2019, 47, 2533-2545.	14.5	213
20	VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discovery, 2018, 4, 10.	6.7	643
21	N6-methyldeoxyadenosine directs nucleosome positioning in Tetrahymena DNA. Genome Biology, 2018, 19, 200.	8.8	45
22	Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencing. Genome Research, 2018, 28, 1067-1078.	5.5	80
23	Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 2017, 27, 1115-1127.	12.0	696
24	YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. ELife, 2017, 6, .	6.0	815
25	DNA N6-methyladenine in metazoans: functional epigenetic mark or bystander?. Nature Structural and Molecular Biology, 2017, 24, 503-506.	8.2	73
26	Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus. Nature Communications, 2016, 7, 11000.	12.8	32
27	Ubiquitously expressed genes participate in cellâ€specific functions via alternative promoter usage. EMBO Reports, 2016, 17, 1304-1313.	4.5	26
28	ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell, 2016, 167, 816-828.e16.	28.9	366
29	Characterization of eukaryotic DNA N6-methyladenine by a highly sensitive restriction enzyme-assisted sequencing. Nature Communications, 2016, 7, 11301.	12.8	93
30	Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nature Communications, 2016, 7, 13052.	12.8	225
31	Highâ€Resolution <i>N</i> ⁶ â€Methyladenosine (m ⁶ A) Map Using Photoâ€Crosslinkingâ€Assisted m ⁶ A Sequencing. Angewandte Chemie - International Edition, 2015, 54, 1587-1590.	13.8	319
32	High-Resolution Mapping of N6-Methyladenosine in Transcriptome and Genome Using a Photo-Crosslinking-Assisted Strategy. Methods in Enzymology, 2015, 560, 161-185.	1.0	31
33	Widespread occurrence of <i>N</i> ⁶ -methyladenosine in bacterial mRNA. Nucleic Acids Research, 2015, 43, 6557-6567.	14.5	165
34	Durable pluripotency and haploidy in epiblast stem cells derived from haploid embryonic stem cellsin vitro. Journal of Molecular Cell Biology, 2015, 7, 326-337.	3.3	19
35	N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas. Cell, 2015, 161, 879-892.	28.9	477
36	DNA N6-methyladenine: a new epigenetic mark in eukaryotes?. Nature Reviews Molecular Cell Biology, 2015, 16, 705-710.	37.0	228

GUAN-ZHENG LUO

#	Article	IF	CITATIONS
37	Unique features of the m6A methylome in Arabidopsis thaliana. Nature Communications, 2014, 5, 5630.	12.8	342
38	Genetic Modification and Screening in Rat Using Haploid Embryonic Stem Cells. Cell Stem Cell, 2014, 14, 404-414.	11.1	85
39	MicroRNA-323-3p Regulates the Activity of Polycomb Repressive Complex 2 (PRC2) via Targeting the mRNA of Embryonic Ectoderm Development (Eed) Gene in Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2013, 288, 23659-23665.	3.4	8
40	Parthenogenetic haploid embryonic stem cells produce fertile mice. Cell Research, 2013, 23, 1330-1333.	12.0	35
41	In Vivo Suppression of MicroRNA-24 Prevents the Transition Toward Decompensated Hypertrophy in Aortic-Constricted Mice. Circulation Research, 2013, 112, 601-605.	4.5	84
42	miR-9 and miR-140-5p Target <i>FoxP2</i> and Are Regulated as a Function of the Social Context of Singing Behavior in Zebra Finches. Journal of Neuroscience, 2013, 33, 16510-16521.	3.6	44
43	Three-dimensional culture may promote cell reprogramming. Organogenesis, 2013, 9, 118-120.	1.2	11
44	Identification of a small molecule 1,4-bis-[4-(3-phenoxy-propoxy)-but-2-ynyl]-piperazine as a novel inhibitor of the transcription factor p53. Acta Pharmacologica Sinica, 2013, 34, 805-810.	6.1	4
45	Dynamics of Brassinosteroid Response Modulated by Negative Regulator LIC in Rice. PLoS Genetics, 2012, 8, e1002686.	3.5	130
46	Upregulation of a Disintegrin and Metalloproteinase With Thrombospondin Motifs-7 by miR-29 Repression Mediates Vascular Smooth Muscle Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2580-2588.	2.4	110
47	Mir-24 Regulates Junctophilin-2 Expression in Cardiomyocytes. Circulation Research, 2012, 111, 837-841.	4.5	87
48	Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature, 2012, 490, 407-411.	27.8	149
49	Activation of the Imprinted Dlk1-Dio3 Region Correlates with Pluripotency Levels of Mouse Stem Cells. Journal of Biological Chemistry, 2010, 285, 19483-19490.	3.4	253
50	BC10, a DUF266â€containing and Golgiâ€located type II membrane protein, is required for cellâ€wall biosynthesis in rice (<i>Oryza sativa</i> L.). Plant Journal, 2009, 57, 446-462.	5.7	109