Jongwook Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5648892/publications.pdf

Version: 2024-02-01

		304743	315739
139	1,640	22	38
papers	citations	h-index	g-index
139	139	139	1992
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis and electroluminescent properties of highly efficient anthracene derivatives with bulky side groups. Organic Electronics, 2009, 10, 822-833.	2.6	100
2	Synthesis and electroluminescence properties of highly efficient blue fluorescence emitters using dual core chromophores. Journal of Materials Chemistry C, 2013, 1, 432-440.	5 . 5	97
3	Dual efficiency enhancement by delayed fluorescence and dipole orientation in high-efficiency fluorescent organic light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	89
4	Variable diffusivity homogeneous surface diffusion model and analysis of merits and fallacies of simplified adsorption kinetics equations. Journal of Hazardous Materials, 2019, 367, 224-245.	12.4	82
5	Highly Efficient New Hole Injection Materials for OLEDs Based on Dimeric Phenothiazine and Phenoxazine Derivatives. Journal of Physical Chemistry C, 2011, 115, 4843-4850.	3.1	77
6	High Efficiency and Long Lifetime of a Fluorescent Blue-Light Emitter Made of a Pyrene Core and Optimized Side Groups. ACS Applied Materials & Side Groups. Side Groups. Side Groups. ACS Applied Materials & Side Groups. Sid	8.0	76
7	Design of fluorescent blue light-emitting materials based on analyses of chemical structures and their effects. Materials Science and Engineering Reports, 2016, 99, 1-22.	31.8	70
8	Core–Shell Structured MXene@Carbon Nanodots as Bifunctional Catalysts for Solar-Assisted Water Splitting. ACS Nano, 2020, 14, 17615-17625.	14.6	66
9	An aromatic imine group enhances the EL efficiency and carrier transport properties of highly efficient blue emitter for OLEDs. Journal of Materials Chemistry, 2010, 20, 5930.	6.7	63
10	Siliconâ€Based Visibleâ€Blind Ultraviolet Detection and Imaging Using Downâ€Shifting Luminophores. Advanced Optical Materials, 2014, 2, 314-319.	7.3	55
11	Synthesis and electroluminescence properties of highly efficient dual core chromophores with side groups for blue emission. Journal of Materials Chemistry C, 2014, 2, 4737-4747.	5 . 5	49
12	Highly efficient emitters of ultra-deep-blue light made from chrysene chromophores. Journal of Materials Chemistry C, 2016, 4, 3833-3842.	5 . 5	48
13	Highly efficient deep-blue fluorescence OLEDs with excellent charge balance based on phenanthro[9,10- <i>d</i>) oxazole-anthracene derivatives. Journal of Materials Chemistry C, 2020, 8, 11168-11176.	5.5	48
14	Excimer emission based on the control of molecular structure and intermolecular interactions. Journal of Materials Chemistry C, 2016, 4, 2784-2792.	5.5	47
15	Synthesis and Electroluminescence of Novel Pyrene-Fused Chromophores. Organic Letters, 2015, 17, 3960-3963.	4.6	46
16	Recent progress in the use of fluorescent and phosphorescent organic compounds for organic light-emitting diode lighting. Journal of Photonics for Energy, 2015, 5, 057608.	1.3	44
17	Excimer formation in organic emitter films associated with a molecular orientation promoted by steric hindrance. Chemical Communications, 2014, 50, 14145-14148.	4.1	43
18	New blue-violet emitters based on an indenopyrazine core for OLEDs: Effects of the position of m-terphenyl side group substitution on optical and electroluminescence properties. Organic Electronics, 2010, 11, 864-871.	2.6	38

#	Article	IF	CITATIONS
19	Highly Stable Allâ€Inorganic Perovskite Quantum Dots Using a ZnX ₂ â€Trioctylphosphineâ€Oxide: Application for Highâ€Performance Fullâ€Color Lightâ€Emitting Diode. Advanced Optical Materials, 2020, 8, 1901897.	7.3	37
20	Highly efficient pyrene blue emitters for OLEDs based on substitution position effect. Dyes and Pigments, 2018, 158, 42-49.	3.7	31
21	Highly efficient dual-core derivatives with EQEs as high as 8.38% at high brightness for OLED blue emitters. Journal of Materials Chemistry C, 2019, 7, 14709-14716.	5.5	30
22	Investigation of high-performance perovskite nanocrystals for inkjet-printed color conversion layers with superior color purity. APL Photonics, 2021, 6, .	5.7	25
23	Improved Electroluminescence Performance of Perovskite Light-Emitting Diodes by a New Hole Transporting Polymer Based on the Benzocarbazole Moiety. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51756-51765.	8.0	22
24	Synthesis and electroluminescence properties of new blue dual-core OLED emitters using bulky side chromophores. Dyes and Pigments, 2017, 136, 255-261.	3.7	20
25	Three-Dimensional Structures Based on the Fusion of Chrysene and Spirobifluorene Chromophores for the Development of Blue OLEDs. Journal of Organic Chemistry, 2018, 83, 2640-2646.	3.2	20
26	Highly efficient dual anthracene core derivatives through optimizing side groups for blue emission. Dyes and Pigments, 2017, 146, 27-36.	3.7	19
27	Enforced Effects of Side Group Substitution Position on Luminescence Properties; Synthesis of Bis(dipyrrinato)zinc Complex Derivatives. Molecular Crystals and Liquid Crystals, 2010, 531, 65/[365]-72/[372].	0.9	18
28	Highly efficient chrysene emitters based on optimized side groups for deep blue emission. Dyes and Pigments, 2018, 156, 299-306.	3.7	14
29	Development of dimeric triarylmethine derivatives with improved thermal and photo stability for color filters. Dyes and Pigments, 2017, 144, 242-248.	3.7	12
30	An ionic conjugated polymer from the catalyst-free polymerization of 2-ethynylpyridine using 3,4,5-trimethoxybenzoyl chloride. Macromolecular Research, 2017, 25, 552-558.	2.4	12
31	Highly efficient blue emitting materials based on indenopyrazine derivatives for OLEDs [Invited]. Optical Materials Express, 2014, 4, 924.	3.0	11
32	Development of cross-linkable dimeric triarylmethine derivatives with improved thermal and solvent stability for color filters. Dyes and Pigments, 2018, 149, 336-340.	3.7	11
33	Synthesis and Physical Property Measurement of New Red Pigment based on Anthraquinone Derivatives for Color Filter Pigments. Molecular Crystals and Liquid Crystals, 2011, 551, 116-122.	0.9	10
34	Blue light emission of new anthracene derivatives produced using optimized side group link positions. Dyes and Pigments, 2018, 156, 369-378.	3.7	9
35	Fine tuning of bipolar side group on dual anthracene core derivatives for highly efficient blue emitters. Dyes and Pigments, 2020, 181, 108555.	3.7	9
36	Achieving Green and Deep-Blue Perovskite LEDs by Dimensional Control Using Various Ammonium Bromides with CsPbBr-3. Materials Today Energy, 2021, , 100749.	4.7	9

#	Article	IF	Citations
37	Three-color white electroluminescence emission using perovskite quantum dots and organic emitters. Applied Surface Science, 2022, 588, 152875.	6.1	8
38	New Ambipolar Blue Emitting Materials Based on Amino Coumarin Derivatives with High Efficiency for Organic Lightemitting Diodes. Journal of Nanoscience and Nanotechnology, 2013, 13, 8020-8024.	0.9	7
39	Highly stable 2,3,5,6-tetrachloro-1,4-benzoquinone electrodes for supercapacitors. Synthetic Metals, 2017, 231, 25-33.	3.9	7
40	Novel thermal radical initiators based on a triazene moiety for radical polymerization. Journal of Industrial and Engineering Chemistry, 2018, 68, 1-5.	5.8	7
41	Synthesis and Electroluminescence Properties of New Blue Emitting Polymer Based on Dual-Core Type for Solution Process OLEDs. Macromolecular Research, 2022, 30, 454-459.	2.4	7
42	Stimuli-Responsive Poly-N-isopropylacrylamide: Phenylene Vinylene Oligomer Conjugate. Journal of Physical Chemistry C, 2013, 117, 7757-7763.	3.1	6
43	New bipolar host materials using Phenanthro[9,10-d]oxazole moiety for highly efficient red phosphorescence. Dyes and Pigments, 2020, 174, 108038.	3.7	6
44	High-efficiency deep-blue emitter consisting of a chrysene core and optimized side groups. Materials Today Energy, 2021, 21, 100706.	4.7	6
45	Synthesis and Electro-Optical Properties of a New Conjugated Polymer Based on a Tetrazine Moiety for Solution-Processed Devices. Macromolecular Research, 2021, 29, 864-870.	2.4	6
46	Synthesis of New Single Black Pigments Based on Azo and Anthraquinone Moieties for LCD Black Matrix. Molecular Crystals and Liquid Crystals, 2010, 529, 88-94.	0.9	5
47	Synthesis and Property of New Blue Emitting Materials with Bulky Side Group. Molecular Crystals and Liquid Crystals, 2015, 618, 66-73.	0.9	5
48	Synthesis of a Polyacetylene by Double Cyclopolymerization of Triyne Monomer and its Electro-optical and Electrochemical Properties. Molecular Crystals and Liquid Crystals, 2013, 579, 95-102.	0.9	4
49	New Anthraquinone Dyes with Different Side Group Positions for LCD Color Filters. Molecular Crystals and Liquid Crystals, 2013, 583, 29-36.	0.9	4
50	New Blue-Light Emitting Materials in White OLED Based on Solution and Vacuum Methods. Molecular Crystals and Liquid Crystals, 2015, 618, 74-79.	0.9	4
51	Excimer Formation Promoted by Steric Hindrance in Dual Core Chromophore for Organic Light-Emitting Diodes Emitters. Journal of Nanoscience and Nanotechnology, 2016, 16, 8854-8857.	0.9	4
52	Achieving a high-efficiency dual-core chromophore for emission of blue light by testing different side groups and substitution positions. RSC Advances, 2017, 7, 55582-55593.	3.6	4
53	Synthesis and characterization of a polyacetylene derivative: Poly(N-methylpropargylamine). Molecular Crystals and Liquid Crystals, 2018, 662, 32-37.	0.9	4
54	High Efficiency Green Fluorescent Dopant Through the Optimized Side Group for Organic Light Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2021, 21, 4000-4004.	0.9	4

#	Article	IF	CITATIONS
55	New anthracene derivatives containing coumarin moiety for organic light-emitting diodes. Molecular Crystals and Liquid Crystals, 2017, 654, 90-95.	0.9	4
56	Synthesis and Physical Properties of New Pyrene Derivative with Bulky Side Groups for Blue Emission. Journal of Nanoscience and Nanotechnology, 2016, 16, 8796-8799.	0.9	3
57	Novel supercapacitor materials including OLED emitters. New Journal of Chemistry, 2016, 40, 58-62.	2.8	3
58	An ionic polyacetylene derivative from the non-catalyst polymerization of 2-ethynylpyridine using 2-(bromomethyl)benzyl alcohol. Molecular Crystals and Liquid Crystals, 2018, 663, 7-13.	0.9	3
59	Single crystal structure and electroluminescence efficiency of blue fluorescence OLED emitters using triple core chromophores. Organic Electronics, 2019, 73, 261-265.	2.6	3
60	Synthesis of New Yellow Synergists Based on Pigment Yellow 74 for Inkjet Applications. Molecular Crystals and Liquid Crystals, 2019, 687, 21-26.	0.9	3
61	High electroluminescence efficiency and long device lifetime of a fluorescent green-light emitter using aggregation-induced emission. Journal of Industrial and Engineering Chemistry, 2020, 87, 213-221.	5.8	3
62	Highly thin film with aerosol-deposited perovskite quantum dot/metal oxide composite for perfect color conversion and luminance enhancement. Chemical Engineering Journal, 2022, 441, 135991.	12.7	3
63	Synthesis of New Metal Complex Derivatives Based on Azo, Naphthol and Pyrazole Moieties for Color Filter Pigments. Molecular Crystals and Liquid Crystals, 2010, 529, 80-87.	0.9	2
64	A Study on Synthesis of New Blue and Red Color Dyes Based on Anthraquinone Moiety. Molecular Crystals and Liquid Crystals, 2013, 583, 37-42.	0.9	2
65	New Emitting Materials Based on HTL Moiety with High Hole Mobility for OLEDs. Molecular Crystals and Liquid Crystals, 2015, 618, 47-54.	0.9	2
66	New Anthracene Derivative Including <i>t</i> -Butyl Group as Blue Emitter in Solution Process Organic Light-Emitting Diode. Journal of Nanoscience and Nanotechnology, 2016, 16, 10923-10926.	0.9	2
67	New anthracene derivatives including diazocine for blue emitting materials. Molecular Crystals and Liquid Crystals, 2017, 651, 71-76.	0.9	2
68	Synthesis and electroluminescent properties of diazocine derivatives. Molecular Crystals and Liquid Crystals, 2017, 651, 77-84.	0.9	2
69	Synthesis and electroluminescence property of new type emitting materials including diazocine for OLEDs. Molecular Crystals and Liquid Crystals, 2017, 651, 35-41.	0.9	2
70	Synthesis and Luminescent Properties of New Blue Polymer Light-Emitting Diodes Material, Poly(9-(3-Vinyl-phenyl)-pyrene). Journal of Nanoscience and Nanotechnology, 2017, 17, 5669-5672.	0.9	2
71	Synthesis and property of diazocine derivatives substituted with imidazole including various chromophores. Molecular Crystals and Liquid Crystals, 2017, 659, 127-133.	0.9	2
72	Fabrication of Phosphorescence WOLEDs Based on Dimeric Phenoxazine Derivative for Hole Injection Layer. Journal of Nanoscience and Nanotechnology, 2017, 17, 5860-5863.	0.9	2

#	Article	IF	Citations
73	An ionic conjugated polymer from the non-catalyst polymerization of 2-ethynylpyridine using perfluorohexyl iodide. Molecular Crystals and Liquid Crystals, 2019, 678, 106-113.	0.9	2
74	Synthesis and Luminescence Property of Pyrene Derivatives Including Diphenyl-Imidazole Moiety. Molecular Crystals and Liquid Crystals, 2019, 687, 14-20.	0.9	2
75	Electro-optical and electrochemical properties of poly[2-ethynyl-N-(α-isobutyryl)pyridinium bromide]. Molecular Crystals and Liquid Crystals, 2020, 706, 30-37.	0.9	2
76	Synthesis and Characterization of Diketopyrrolopyrrole-Based Aggregation-Induced Emission Nanoparticles for Bioimaging. Molecules, 2022, 27, 2984.	3.8	2
77	Indolo[3,2,1- <i>jk</i>]carbazole-Derived Narrowband Violet–Blue Fluorophores: Tuning the Optical and Electroluminescence Properties by Chromophore Juggling. Journal of Organic Chemistry, 2022, 87, 6668-6679.	3.2	2
78	Color Tuning of Novel Indenopyrazine Core Emitter System by Using Side Group Effect. Molecular Crystals and Liquid Crystals, 2010, 531, 33/[333]-39/[339].	0.9	1
79	Alkyl Group Effect on Small Molecule Emitter Based on Anthracene Moiety in Solution Process. Molecular Crystals and Liquid Crystals, 2011, 539, 11/[351]-17/[357].	0.9	1
80	39.4: Dual Efficiency Enhancement by Delayed Fluorescence and Dipole Orientation in High-efficiency Fluorescent Organic Light-emitting Diodes. Digest of Technical Papers SID International Symposium, 2012, 43, 541-543.	0.3	1
81	New Copper Complex Derivatives Including Bis-Dipyrrinato Ligand for Color Filter Pigments. Molecular Crystals and Liquid Crystals, 2012, 563, 43-49.	0.9	1
82	Synthesis of New Dye Compounds Based on Anthraquinone Moiety for Color Filter Colorants. Molecular Crystals and Liquid Crystals, 2013, 579, 110-114.	0.9	1
83	New Hole Transporting Materials Based on Tetraphenylbenzene and Aromatic Amine Derivatives for OLEDs. Molecular Crystals and Liquid Crystals, 2013, 584, 69-77.	0.9	1
84	A Comparative Study on the Optical Properties of Single-Layered White OLED Based on Multi-Host, Dopant System. Molecular Crystals and Liquid Crystals, 2014, 597, 107-113.	0.9	1
85	Photodetectors: Silicon-Based Visible-Blind Ultraviolet Detection and Imaging Using Down-Shifting Luminophores (Advanced Optical Materials 4/2014). Advanced Optical Materials, 2014, 2, 313-313.	7.3	1
86	New Amino Methyl Coumarin Derivative for OLED Blue Emitter. Molecular Crystals and Liquid Crystals, 2015, 620, 139-146.	0.9	1
87	Synthesis and Electroluminescence Property of New Hexaphenyl Benzene Derivatives Including Emitting Materials for OLED. Molecular Crystals and Liquid Crystals, 2015, 618, 38-46.	0.9	1
88	P-156: Electroluminescence Properties of Novel Pyrene-Fused Chromophores. Digest of Technical Papers SID International Symposium, 2016, 47, 1714-1716.	0.3	1
89	New blue emitting materials based on triple-core chromophores for organic light-emitting diodes. Molecular Crystals and Liquid Crystals, 2017, 654, 40-46.	0.9	1
90	Synthesis and electroluminescent properties of new blue emitters based on dual anthracene and dibenzo-diazocine moieties. Molecular Crystals and Liquid Crystals, 2017, 659, 140-146.	0.9	1

#	Article	IF	CITATIONS
91	Electro-optical and electrochemical properties of poly(1-ethynyl-4-phenoxybenzene). Molecular Crystals and Liquid Crystals, 2017, 659, 100-107.	0.9	1
92	Efficient White Organic Light Emitting Diodes Using New Blue Fluorescence Emitter Based on Vacuum and Solution Process. Journal of Nanoscience and Nanotechnology, 2017, 17, 4339-4342.	0.9	1
93	Synthesis and property of diazocine derivatives substituted with imidazole in various positions. Molecular Crystals and Liquid Crystals, 2018, 662, 96-101.	0.9	1
94	Synthesis of yellow synergist based on pigment yellow 74 for inkjet applications. Molecular Crystals and Liquid Crystals, 2018, 663, 1-6.	0.9	1
95	Synthesis and Electroluminescent Properties of New Dibenzo-Diazocine Derivatives. Journal of Nanoscience and Nanotechnology, 2018, 18, 2171-2174.	0.9	1
96	New optimized triazene radical initiators for thermal polymerization. Journal of Industrial and Engineering Chemistry, 2019, 79, 274-278.	5.8	1
97	Synthesis and Properties of New Imidazole Derivatives Including Various Chromophore for OLEDs. Molecular Crystals and Liquid Crystals, 2019, 687, 27-33.	0.9	1
98	Synthesis and Characterization of Poly[N-(3-butynyl)-2-ethynylpyridinium bromide]. Molecular Crystals and Liquid Crystals, 2019, 688, 44-52.	0.9	1
99	Synthesis and Electroluminescence Property of Pyrene Derivatives Including Dibenzothiophene and Imidazole Moiety. Journal of Nanoscience and Nanotechnology, 2019, 19, 4710-4714.	0.9	1
100	New blended blue colorants based on triarylmethine dye and anthraquinone pigment for image sensors. Molecular Crystals and Liquid Crystals, 2022, 735, 23-28.	0.9	1
101	Anthracene Green Fluorescent Derivatives Based on Optimized Side Groups for Highly Efficient Organic Light-Emitting Diode Emitters. Journal of Nanoscience and Nanotechnology, 2021, 21, 4690-4693.	0.9	1
102	Effect of the Length of Side Group Substitution on Optical and Electroluminescene Properties. Bulletin of the Korean Chemical Society, 2014, 35, 3041-3046.	1.9	1
103	New Thermal Radical Inhibitors Based on a Triazene Metal Complex for Radical Polymerization. Journal of Nanoscience and Nanotechnology, 2020, 20, 5510-5514.	0.9	1
104	Hybrid two-color pink emission device of perovskite red quantum dot materials using organic blue emitter. Applied Nanoscience (Switzerland), 2022, 12, 3343-3351.	3.1	1
105	Crystals and Liquid Crystals, 0, , 1-8.	0.9	1
106	Substituent effects on the luminescence and charge transport properties of novel bis-lactam-based molecules. Dyes and Pigments, 2022, , 110465.	3.7	1
107	Three-Color White Photoluminescence Emission Using Perovskite Nanoplatelets and Organic Emitter. Molecules, 2022, 27, 3982.	3.8	1
108	Measurements in the wake of an airfoil with regular roughness on the upper surface near the leading edge. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2006, 220, 203-208.	1.3	0

#	Article	IF	CITATIONS
109	P-168: The Effects of Side Group and Its Link Position on OLED Performance: How to Control Side Groups for Efficient Emitters?. Digest of Technical Papers SID International Symposium, 2010, 41, 1879.	0.3	O
110	Highly Induced Photoluminescense Indenopyrazine Derivatives. Molecular Crystals and Liquid Crystals, 2011, 550, 149-155.	0.9	0
111	P.144:Late-News Poster: Synthesis and Electroluminescence Properties of Highly Efficient Blue Fluorescence Emitters Using Dual Core Chromophores. Digest of Technical Papers SID International Symposium, 2013, 44, 1480-1482.	0.3	0
112	Single-layered White Organic Light Emitting Diodes Using Solution Process Based on Co-Host Emitter System. Molecular Crystals and Liquid Crystals, 2014, 597, 100-106.	0.9	0
113	Blue Emission Color Control by Co-Deposition Method in Organic Light Emitting Diodes. Molecular Crystals and Liquid Crystals, 2014, 599, 139-144.	0.9	0
114	Pâ€124: Excimer Formation in Organic Emitter Films Associated with a Molecular Orientation Promoted by Steric Hinderance. Digest of Technical Papers SID International Symposium, 2015, 46, 1633-1635.	0.3	0
115	White OLED Using Highly Efficient Green Dopant via Solution Process. Molecular Crystals and Liquid Crystals, 2015, 621, 26-30.	0.9	0
116	Pâ€190: White Light Emission of Triple Core Chromophores Using Anthracene and Pyrene Moieties. Digest of Technical Papers SID International Symposium, 2017, 48, 1985-1988.	0.3	0
117	Synthesis of new yellow synergists for inkjet applications. Molecular Crystals and Liquid Crystals, 2017, 651, 3-8.	0.9	0
118	New carbazole derivatives including coumarin moiety for blue emitting materials. Molecular Crystals and Liquid Crystals, 2017, 654, 34-39.	0.9	0
119	High Performance White Organic Light-Emitting Diodes with Blue Fluorescence and Red Phosphorescence. Journal of Nanoscience and Nanotechnology, 2017, 17, 5751-5754.	0.9	0
120	Synthesis and electro-optical properties of diazocine derivatives based on different positions of substituted naphthyl group. Molecular Crystals and Liquid Crystals, 2017, 659, 94-99.	0.9	0
121	Synthesis and property of diazocine derivatives substituted with carbazole in meta and para positions. Molecular Crystals and Liquid Crystals, 2017, 659, 9-14.	0.9	0
122	New Yellow Synergist for Stable Pigment Dispersion of Inkjet Ink. Journal of Nanoscience and Nanotechnology, 2018, 18, 1336-1338.	0.9	0
123	Pâ€173: Dual Anthracene Core Derivatives for Highly Efficient Blue OLED Emitters. Digest of Technical Papers SID International Symposium, 2018, 49, 1811-1814.	0.3	0
124	Synthesis of new yellow synergists based on pigment yellow 150 for inkjet applications. Molecular Crystals and Liquid Crystals, 2018, 662, 109-113.	0.9	0
125	Synthesis and electroluminescent properties of new diazocine derivatives. Molecular Crystals and Liquid Crystals, 2018, 662, 102-108.	0.9	0
126	Synthesis and Electroluminescence Properties of New Dual-Core Derivatives. Journal of Nanoscience and Nanotechnology, 2018, 18, 2166-2170.	0.9	0

#	Article	IF	CITATIONS
127	Synthesis and characterization of poly(2-ethynyl-N-iodopyridinium tetraphenylborate). Molecular Crystals and Liquid Crystals, 2019, 678, 114-120.	0.9	0
128	Synthesis and luminescent property of fluorene-xanthene derivatives for new blue emitters. Molecular Crystals and Liquid Crystals, 2019, 679, 95-101.	0.9	0
129	Synthesis and Electroluminescence Property of Green Fluorescent Dopant Including Anthracene and Diphenylamine Moiety. Journal of Nanoscience and Nanotechnology, 2019, 19, 4799-4802.	0.9	0
130	Synthesis and Electroluminescence Property of Anthracene Green Fluorescent Derivatives Based on Optimized Side Groups. Journal of Nanoscience and Nanotechnology, 2021, 21, 4037-4041.	0.9	0
131	Synthesis and Blue Pixel Property of New Violet Dye for Image Sensors. Journal of Nanoscience and Nanotechnology, 2021, 21, 3996-3999.	0.9	0
132	Synthesis and Physical Properties of New Violet Color Filter Dye for Image Sensors. Journal of Nanoscience and Nanotechnology, 2021, 21, 4685-4689.	0.9	0
133	Synthesis and Physical Properties of New Blue Color Filter Dye Using on Triarylmethine Moiety for Image Sensors. Journal of Nanoscience and Nanotechnology, 2021, 21, 4675-4679.	0.9	0
134	Synthesis and Electro-Optical Property of Green Fluorescent Emitter Based on Anthracene Core and Optimized Side Groups. Journal of Nanoscience and Nanotechnology, 2021, 21, 4654-4659.	0.9	0
135	Synthesis and Characterization of a Water-Soluble Ionic Polyacetylene Derivative. Acta Physica Polonica A, 2016, 129, 642-646.	0.5	0
136	New Bipolar Green Emitting Material Based on Amino Coumarin Derivative with High Efficiency for Organic Light Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2017, 17, 5890-5892.	0.9	0
137	New thermal-latent titanium metal catalyst using dual curing reaction for electroactive polymers. Molecular Crystals and Liquid Crystals, 0, , 1 -7.	0.9	0
138	New blue emitters including phenanthro $[9,10-\langle i\rangle d\langle i\rangle]$ oxazole and bulky side group. Molecular Crystals and Liquid Crystals, $0, 1-8$.	0.9	0
139	Synthesis and electrical properties of new blue emitter having boron atom and anthracene moiety. Molecular Crystals and Liquid Crystals, 0, , 1-8.	0.9	O