Alexander Kirdyanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5648882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The buffering effect of the Lake Baikal on climate impact on Pinus sylvestris L. radial growth. Agricultural and Forest Meteorology, 2022, 313, 108764.	4.8	4
2	Global tree-ring response and inferred climate variation following the mid-thirteenth century Samalas eruption. Climate Dynamics, 2022, 59, 531-546.	3.8	9
3	Fire as a Major Factor in Dynamics of Tree-Growth and Stable δ13C and δ18O Variations in Larch in the Permafrost Zone. Forests, 2022, 13, 725.	2.1	4
4	Modern aridity in the Altai-Sayan mountain range derived from multiple millennial proxies. Scientific Reports, 2022, 12, 7752.	3.3	5
5	Predicted sea-ice loss will terminate Iceland's driftwood supply by 2060ÂCE. Global and Planetary Change, 2022, 213, 103834.	3.5	1
6	Towards the Third Millennium Changes in Siberian Triple Tree-Ring Stable Isotopes. Forests, 2022, 13, 934.	2.1	3
7	Recognising bias in Common Era temperature reconstructions. Dendrochronologia, 2022, 74, 125982.	2.2	8
8	Global fading of the temperature–growth coupling at alpine and polar treelines. Global Change Biology, 2021, 27, 1879-1889.	9.5	46
9	Short communication: Driftwood provides reliable chronological markers in Arctic coastal deposits. Geochronology, 2021, 3, 171-180.	2.5	4
10	The influence of decision-making in tree ring-based climate reconstructions. Nature Communications, 2021, 12, 3411.	12.8	59
11	Arctic aerosols and the â€~Divergence Problem' in dendroclimatology. Dendrochronologia, 2021, 67, 125837.	2.2	4
12	Linking tree growth and intra-annual density fluctuations to climate in suppressed and dominant Pinus sylvestris L. trees in the forest-steppe of Southern Siberia. Dendrochronologia, 2021, 67, 125842.	2.2	11
13	Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia, 2020, 64, 125757.	2.2	66
14	Ecological and conceptual consequences of Arctic pollution. Ecology Letters, 2020, 23, 1827-1837.	6.4	31
15	Contribution of Xylem Anatomy to Tree-Ring Width of Two Larch Species in Permafrost and Non-Permafrost Zones of Siberia. Forests, 2020, 11, 1343.	2.1	9
16	Climatic factors controlling Pinus sylvestris radial growth along a transect of increasing continentality in southern Siberia. Dendrochronologia, 2020, 62, 125709.	2.2	22
17	No Age Trends in Oak Stable Isotopes. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003831.	2.9	21
18	Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environmental Research Letters, 2020, 15, 034061.	5.2	58

Alexander Kirdyanov

#	Article	IF	CITATIONS
19	Ranking of tree-ring based hydroclimate reconstructions of the past millennium. Quaternary Science Reviews, 2020, 230, 106074.	3.0	50
20	Scientific Merits and Analytical Challenges of Treeâ€Ring Densitometry. Reviews of Geophysics, 2019, 57, 1224-1264.	23.0	98
21	Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Climate of the Past, 2019, 15, 685-700.	3.4	26
22	Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications, 2019, 10, 2171.	12.8	92
23	Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia. Science of the Total Environment, 2019, 652, 314-319.	8.0	43
24	Notes towards an optimal sampling strategy in dendroclimatology. Dendrochronologia, 2018, 52, 162-166.	2.2	11
25	Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nature Communications, 2018, 9, 3605.	12.8	98
26	Long-term recruitment dynamics of arctic dwarf shrub communities in coastal east Greenland. Dendrochronologia, 2018, 50, 70-80.	2.2	10
27	Permafrost Regime Affects the Nutritional Status and Productivity of Larches in Central Siberia. Forests, 2018, 9, 314.	2.1	22
28	Dendro-provenancing of Arctic driftwood. Quaternary Science Reviews, 2017, 162, 1-11.	3.0	20
29	Minimum wood density of conifers portrays changes in early season precipitation at dry and cold Eurasian regions. Trees - Structure and Function, 2017, 31, 1423-1437.	1.9	25
30	Reply to 'Limited Late Antique cooling'. Nature Geoscience, 2017, 10, 243-243.	12.9	13
31	Warming Effects on Pinus sylvestris in the Cold–Dry Siberian Forest–Steppe: Positive or Negative Balance of Trade?. Forests, 2017, 8, 490.	2.1	25
32	Effects of Boreal Timber Rafting on the Composition of Arctic Driftwood. Forests, 2016, 7, 257.	2.1	10
33	Structure and Function of Intra–Annual Density Fluctuations: Mind the Gaps. Frontiers in Plant Science, 2016, 7, 595.	3.6	72
34	Regional coherency of boreal forest growth defines Arctic driftwood provenancing. Dendrochronologia, 2016, 39, 3-9.	2.2	13
35	Trends In Elemental Concentrations of Tree Rings From the Siberian Arctic. Tree-Ring Research, 2016, 72, 67-77.	0.6	13
36	Diverse growth trends and climate responses across Eurasia's boreal forest. Environmental Research Letters, 2016, 11, 074021.	5.2	75

#	Article	IF	CITATIONS
37	The impact of an inverse climate–isotope relationship in soil water on the oxygenâ€isotope composition of <i>Larix gmelinii</i> in Siberia. New Phytologist, 2016, 209, 955-964.	7.3	50
38	Intraseasonal carbon sequestration and allocation in larch trees growing on permafrost in Siberia after 13C labeling (two seasons of 2013–2014 observation). Photosynthesis Research, 2016, 130, 267-274.	2.9	6
39	Ranking of tree-ring based temperature reconstructions of the past millennium. Quaternary Science Reviews, 2016, 145, 134-151.	3.0	91
40	Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience, 2016, 9, 231-236.	12.9	596
41	Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 662-667.	7.1	126
42	VS-oscilloscope: A new tool to parameterize tree radial growth based on climate conditions. Dendrochronologia, 2016, 39, 42-50.	2.2	79
43	Timber Logging in Central Siberia is the Main Source for Recent Arctic Driftwood. Arctic, Antarctic, and Alpine Research, 2015, 47, 449-460.	1.1	24
44	Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophysical Research Letters, 2015, 42, 4556-4562.	4.0	134
45	Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 2015, 1, 15160.	9.3	294
46	Examining the response of needle carbohydrates from <scp>S</scp> iberian larch trees to climate using compoundâ€specific δ ¹³ <scp>C</scp> and concentration analyses. Plant, Cell and Environment, 2015, 38, 2340-2352.	5.7	40
47	Temperatureâ€induced recruitment pulses of Arctic dwarf shrub communities. Journal of Ecology, 2015, 103, 489-501.	4.0	90
48	Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce. Biogeosciences, 2015, 12, 6205-6217.	3.3	27
49	The response of δ13C, δ18O and cell anatomy of Larix gmelinii tree rings to differing soil active layer depths. Dendrochronologia, 2015, 34, 51-59.	2.2	23
50	Zn isotope fractionation in a pristine larch forest on permafrost-dominated soils in Central Siberia. Geochemical Transactions, 2015, 16, 3.	0.7	30
51	Variability of ray anatomy of Larix gmelinii along a forest productivity gradient in Siberia. Trees - Structure and Function, 2015, 29, 1165-1175.	1.9	21
52	The relationship between needle sugar carbon isotope ratios and tree rings of larch in Siberia. Tree Physiology, 2015, 35, tpv096.	3.1	27
53	Die-off dynamics of Siberian larch under the impact of pollutants emitted by Norilsk enterprises. Contemporary Problems of Ecology, 2014, 7, 679-684.	0.7	9
54	Cruising an archive: On the palaeoclimatic value of the Lena Delta. Holocene, 2014, 24, 627-630.	1.7	10

Alexander Kirdyanov

#	Article	IF	CITATIONS
55	Tracing the origin of Arctic driftwood. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 68-76.	3.0	37
56	Specific features of xylogenesis in Dahurian larch, Larix gmelinii (Rupr.) Rupr., growing on permafrost soils in Middle Siberia. Russian Journal of Ecology, 2013, 44, 361-366.	0.9	26
57	Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia. Quaternary Science Reviews, 2013, 72, 83-107.	3.0	91
58	Tree-ring growth of Gmelin larch under contrasting local conditions in the north of Central Siberia. Dendrochronologia, 2013, 31, 114-119.	2.2	40
59	Seasonal and spatial variability of elemental concentrations in boreal forest larch foliage of Central Siberia on continuous permafrost. Biogeochemistry, 2013, 113, 435-449.	3.5	35
60	Temperatureâ€induced responses of xylem structure of <i>Larix sibirica</i> (Pinaceae) from the Russian Altay. American Journal of Botany, 2013, 100, 1332-1343.	1.7	82
61	Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia. Environmental Research Letters, 2013, 8, 035034.	5.2	59
62	Tree rings and volcanic cooling. Nature Geoscience, 2012, 5, 836-837.	12.9	137
63	20th century treeâ€line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas, 2012, 41, 56-67.	2.4	91
64	A multi-proxy approach for revealing recent climatic changes in the Russian Altai. Climate Dynamics, 2012, 38, 175-188.	3.8	49
65	Trends and uncertainties in Siberian indicators of 20th century warming. Global Change Biology, 2010, 16, 386-398.	9.5	103
66	Twentieth century trends in tree ring stable isotopes (<i>Ĩ´</i> ¹³ C and) Tj ETQq0 0 0 rgBT /Overlock Journal of Geophysical Research, 2010, 115, .	10 Tf 50 3 3.3	307 Td (<i>Î 39</i>
67	Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north?. Oecologia, 2009, 161, 825-835.	2.0	83
68	Wood transformation in dead-standing trees in the forest-tundra of Central Siberia. Biology Bulletin, 2009, 36, 58-65.	0.5	21
69	1929-YEAR TREE-RING CHRONOLOGY FOR THE ALTAI-SAYAN REGION (WESTERN TUVA). Archaeology, Ethnology and Anthropology of Eurasia, 2008, 36, 25-31.	0.2	14
70	Climate signals in tree-ring width, density and δ13C from larches in Eastern Siberia (Russia). Chemical Geology, 2008, 252, 31-41.	3.3	91
71	Productivity of mosses and organic matter accumulation in the litter of sphagnum larch forest in the permafrost zone. Russian Journal of Ecology, 2006, 37, 225-232.	0.9	15
72	Separating the climatic signal from tree-ring width and maximum latewood density records. Trees - Structure and Function, 2006, 21, 37-44.	1.9	40

#	Article	IF	CITATIONS
73	Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia. Oecologia, 2006, 147, 86-95.	2.0	45
74	The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees - Structure and Function, 2003, 17, 61-69.	1.9	210
75	The Relationship Between Variability of Cell Wall Mass of Earlywood and Latewood Tracheids in Larch Tree-Rings, the Rate of Tree-Ring Growth and Climatic Changes. Holzforschung, 2003, 57, 1-7.	1.9	17
76	Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 1999, 400, 149-151.	27.8	536