
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5648738/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Confined Cobalt on Carbon Nanotubes in Solventâ€free Aerobic Oxidation of Ethylbenzene: Enhanced Interfacial Charge Transfer. ChemCatChem, 2022, 14, .	3.7	7
2	Self-nitrogen-doped porous carbon prepared via pyrolysis of grass-blade without additive for oxygen reduction reaction. Diamond and Related Materials, 2022, 121, 108742.	3.9	9
3	PtRu Catalysts on Nitrogen-Doped Carbon Nanotubes with Conformal Hydrogenated TiO ₂ Shells for Methanol Oxidation. ACS Applied Nano Materials, 2022, 5, 3275-3288.	5.0	15
4	Solvent-Free Production of ε-Caprolactone from Oxidation of Cyclohexanone Catalyzed by Nitrogen-Doped Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2022, 61, 2037-2044.	3.7	6
5	Controllable Surfactantâ€free Synthesis of Colloidal Platinum Nanocuboids Enabled by Bromide Ions and Carbon Monoxide. ChemElectroChem, 2022, 9, .	3.4	2
6	Catalytic Synthesis of Lactones from Alkanes in the Presence of Aldehydes and Carbon Nanotubes. ACS Sustainable Chemistry and Engineering, 2022, 10, 6713-6723.	6.7	4
7	MnO2 nanoparticles supported on CNTs for cumene oxidation: Synergistic effect and kinetic modelling. Chemical Engineering Journal, 2022, 444, 136666.	12.7	11
8	Unprecedented Selective Aerobic Oxidation of Alcohols to Carbonyl Compounds Over Drilled Carbon Nanotubes Assisted with Fe(NO ₃) ₃ . ACS Sustainable Chemistry and Engineering, 2022, 10, 7564-7575.	6.7	1
9	Configuration Sensitivity of Electrocatalytic Oxygen Reduction Reaction on Nitrogen-Doped Graphene. Journal of Physical Chemistry Letters, 2022, 13, 6187-6193.	4.6	1
10	New Understanding of Selective Aerobic Oxidation of Ethylbenzene Catalyzed by Nitrogenâ€doped Carbon Nanotubes. ChemCatChem, 2021, 13, 646-655.	3.7	20
11	Green synthesis of iron and nitrogen coâ€doped porous carbon via pyrolysing lotus root as a <scp>highâ€performance</scp> electrocatalyst for oxygen reduction reaction. International Journal of Energy Research, 2021, 45, 10393-10408.	4.5	17
12	Porous Carbon Nanosheets Derived from ZIFâ€8 Treated with KCl as Highly Efficient Electrocatalysts for the Oxygen Reduction Reaction. Energy Technology, 2021, 9, 2100035.	3.8	21
13	<scp>Pt–calcium</scp> cobaltate enables sorptionâ€enhanced steam reforming of glycerol coupled with chemicalâ€looping <scp>CH₄</scp> combustion. AICHE Journal, 2021, 67, e17383.	3.6	2
14	Inhibitory effect of Zn ²⁺ on the chainâ€initiation process of cumene oxidation. International Journal of Quantum Chemistry, 2021, 121, e26780.	2.0	11
15	Radical Propagation Facilitating Aerobic Oxidation of Substituted Aromatics Promoted by Tertâ€Butyl Hydroperoxide. ChemistrySelect, 2021, 6, 6895-6903.	1.5	2
16	Understanding the Catalytic Sites in Porous Hexagonal Boron Nitride for the Epoxidation of Styrene. ACS Catalysis, 2021, 11, 8872-8880.	11.2	20
17	Wheatâ€Flourâ€Derived Magnetic Porous Carbons by CaCl ₂ â€Activation and their Application in Cr(VI) Removal. ChemistrySelect, 2021, 6, 13215-13223.	1.5	2
18	Heat-regulating effects of inert salts on magnesiothermic reduction preparation of silicon nanopowder for lithium storage. Ionics, 2020, 26, 1249-1259.	2.4	6

#	Article	IF	CITATIONS
19	Synergistic Effect of Nitrogen Dopants on Carbon Nanotubes on the Catalytic Selective Epoxidation of Styrene. ACS Catalysis, 2020, 10, 129-137.	11.2	55
20	Chlorineâ€Promoted Nitrogen and Sulfur Coâ€Doped Biocarbon Catalyst for Electrochemical Carbon Dioxide Reduction. ChemElectroChem, 2020, 7, 320-327.	3.4	20
21	Effect of Experimental Operations on the Limiting Current Density of Oxygen Reduction Reaction Evaluated by Rotatingâ€Disk Electrode. ChemElectroChem, 2020, 7, 1107-1114.	3.4	52
22	Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution. ChemSusChem, 2020, 13, 5041-5049.	6.8	28
23	Biomass-Derived Nitrogen-Doped Porous Carbons Activated by Magnesium Chloride as Ultrahigh-Performance Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 21756-21767.	3.7	28
24	Trace amounts of Cu(OAc) ₂ boost the efficiency of cumene oxidation catalyzed by carbon nanotubes washed with HCl. Catalysis Science and Technology, 2020, 10, 2523-2530.	4.1	22
25	Intrinsic acid resistance and high removal performance from the incorporation of nickel nanoparticles into nitrogen doped tubular carbons for environmental remediation. Journal of Colloid and Interface Science, 2020, 566, 46-59.	9.4	21
26	Selective Catalytic Oxidation of Benzyl Alcohol to Benzaldehyde by Nitrates. Frontiers in Chemistry, 2020, 8, 151.	3.6	16
27	Hydrogen Production from Sorption-Enhanced Steam Reforming of Phenol over a Ni–Ca–Al–O Bifunctional Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 7111-7120.	6.7	28
28	Electron-Rich Ruthenium on Nitrogen-Doped Carbons Promoting Levulinic Acid Hydrogenation to γ-Valerolactone: Effect of Metal–Support Interaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16501-16510.	6.7	64
29	Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chemical Science, 2019, 10, 1589-1596.	7.4	170
30	Elucidating Interaction between Palladium and N-Doped Carbon Nanotubes: Effect of Electronic Property on Activity for Nitrobenzene Hydrogenation. ACS Catalysis, 2019, 9, 2893-2901.	11.2	101
31	Facile Synthesis of Cobalt and Nitrogen Coordinated Carbon Nanotube as a High-Performance Electrocatalyst for Oxygen Reduction Reaction in Both Acidic and Alkaline Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 10951-10961.	6.7	21
32	Calcium Chloride Activation of Mung Bean: A Low ost, Green Route to Nâ€Doped Porous Carbon for Supercapacitors. ChemistrySelect, 2019, 4, 3432-3439.	1.5	21
33	Superoxide Decay Pathways in Oxygen Reduction Reaction on Carbonâ€Based Catalysts Evidenced by Theoretical Calculations. ChemSusChem, 2019, 12, 1133-1138.	6.8	13
34	Highly efficient and acid-corrosion resistant nitrogen doped magnetic carbon nanotubes for the hexavalent chromium removal with subsequent reutilization. Chemical Engineering Journal, 2019, 361, 547-558.	12.7	41
35	Mn ₃ O ₄ @C Nanoparticles Supported on Porous Carbon as Bifunctional Oxygen Electrodes and their Electrocatalytic Mechanism. ChemElectroChem, 2019, 6, 359-368.	3.4	32
36	Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media. Journal of Energy Chemistry, 2019, 34, 33-42.	12.9	44

#	Article	IF	CITATIONS
37	Unraveling the intrinsic enhancement of fluorine doping in the dual-doped magnetic carbon adsorbent for the environmental remediation. Journal of Colloid and Interface Science, 2019, 538, 327-339.	9.4	18
38	Catalytic wet air oxidation of phenol over carbon nanotubes: Synergistic effect of carboxyl groups and edge carbons. Carbon, 2018, 133, 464-473.	10.3	41
39	Co9S8-porous carbon spheres as bifunctional electrocatalysts with high activity and stability for oxygen reduction and evolution reactions. Electrochimica Acta, 2018, 265, 32-40.	5.2	58
40	Calcium cobaltate: a phase-change catalyst for stable hydrogen production from bio-glycerol. Energy and Environmental Science, 2018, 11, 660-668.	30.8	38
41	A kinetics study on cumene oxidation catalyzed by carbon nanotubes: Effect of N-doping. Chemical Engineering Science, 2018, 177, 391-398.	3.8	40
42	Nickel Nanoparticles Encapsulated in Nitrogen-Doped Carbon Nanotubes as Excellent Bifunctional Oxygen Electrode for Fuel Cell and Metal–Air Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 15108-15118.	6.7	42
43	Dual Functional CuO _{1–<i>x</i>} Clusters for Enhanced Photocatalytic Activity and Stability of a Pt Cocatalyst in an Overall Water-Splitting Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 17340-17351.	6.7	15
44	Hexavalent chromium removal over magnetic carbon nanoadsorbents: synergistic effect of fluorine and nitrogen co-doping. Journal of Materials Chemistry A, 2018, 6, 13062-13074.	10.3	145
45	Novel Highly Active Anatase/Rutile TiO ₂ Photocatalyst with Hydrogenated Heterophase Interface Structures for Photoelectrochemical Water Splitting into Hydrogen. ACS Sustainable Chemistry and Engineering, 2018, 6, 10823-10832.	6.7	69
46	Valorization of Biomass Hydrolysis Waste: Activated Carbon from Humins as Exceptional Sorbent for Wastewater Treatment. Sustainability, 2018, 10, 1795.	3.2	21
47	Poly(vinylidene fluoride) derived fluorine-doped magnetic carbon nanoadsorbents for enhanced chromium removal. Carbon, 2017, 115, 503-514.	10.3	60
48	Unravelling the radical transition during the carbon-catalyzed oxidation of cyclohexane by in situ electron paramagnetic resonance in the liquid phase. Catalysis Science and Technology, 2017, 7, 4431-4436.	4.1	18
49	Magnetic Nanocarbon Adsorbents with Enhanced Hexavalent Chromium Removal: Morphology Dependence of Fibrillar vs Particulate Structures. Industrial & Engineering Chemistry Research, 2017, 56, 10689-10701.	3.7	267
50	Effect of the surface roughness of copper substrate on three-dimensional tin electrode for electrochemical reduction of CO2 into HCOOH. Journal of CO2 Utilization, 2017, 21, 219-223.	6.8	23
51	A Review of Carbon-based Non-noble Catalysts for Oxygen Reduction Reaction. Acta Chimica Sinica, 2017, 75, 943.	1.4	15
52	One-pot melamine derived nitrogen doped magnetic carbon nanoadsorbents with enhanced chromium removal. Carbon, 2016, 109, 640-649.	10.3	125
53	Chemically drilling carbon nanotubes for electrocatalytic oxygen reduction reaction. Electrochimica Acta, 2016, 190, 49-56.	5.2	34
54	Aerobic oxidation of α-pinene catalyzed by carbon nanotubes. Catalysis Science and Technology, 2015, 5, 3935-3944.	4.1	32

#	Article	IF	CITATIONS
55	O ₂ and H ₂ O ₂ transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 21950-21959.	2.8	22
56	Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. Journal of Power Sources, 2015, 286, 495-503.	7.8	121
57	Low Pt content catalyst supported on nitrogen and phosphorus-codoped carbon nanotubes for electrocatalytic O2 reaction in acidic medium. Materials Letters, 2015, 142, 115-118.	2.6	15
58	The effect of edge carbon of carbon nanotubes on the electrocatalytic performance of oxygen reduction reaction. Electrochemistry Communications, 2014, 40, 5-8.	4.7	55
59	Selective Allylic Oxidation of Cyclohexene Catalyzed by Nitrogen-Doped Carbon Nanotubes. ACS Catalysis, 2014, 4, 1617-1625.	11.2	143
60	A Novel Carbonâ€Encapsulated Cobaltâ€Tungsten Carbide as Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Fuel Cells, 2013, 13, 387-391.	2.4	30
61	sp2- and sp3-hybridized carbon materials as catalysts for aerobic oxidation of cyclohexane. Catalysis Science and Technology, 2013, 3, 2654.	4.1	46
62	Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon, 2013, 57, 433-442.	10.3	209