
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647288/publications.pdf Version: 2024-02-01

YIIIN CHEN

#	Article	IF	CITATIONS
1	Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 108, 1-9.	10.7	5
2	Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion. Chemical Engineering Journal, 2022, 433, 133794.	12.7	52
3	Fabrication of Fe/Fe3C-nanoparticles encapsulated nitrogen-doped carbon nanotubes with thin wall thickness as high-efficiency electromagnetic wave absorbing materials. Journal of Alloys and Compounds, 2022, 898, 162833.	5.5	17
4	Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Applied Physics Reviews, 2022, 9, .	11.3	86
5	Pearl necklace-like CoMn-based nanostructures derived from metal-organic frames for enhanced electromagnetic wave absorption. Carbon, 2022, 188, 254-264.	10.3	40
6	Monodisperse branched nickel carbide nanoparticles in situ grown on reduced graphene oxide with excellent electromagnetic absorption properties. Journal of Alloys and Compounds, 2022, 900, 163453.	5.5	13
7	Interface engineering of metallic nickel nanoparticles/semiconductive nickel molybdate nanowires for efficiently electrocatalytic water splitting. Materials Today Nano, 2022, 18, 100176.	4.6	9
8	Monodisperse MnO nanoparticles in situ grown on reduced graphene oxide via hydrophobic interaction for excellent electromagnetic wave absorption. Journal of Materials Research, 2022, 37, 2175-2184.	2.6	3
9	Grafting thin N-doped carbon nanotubes on hollow N-doped carbon nanoplates encapsulated with ultrasmall cobalt particles for microwave absorption. Chemical Engineering Journal, 2022, 435, 134846.	12.7	36
10	Identification of the Intrinsic Dielectric Properties of Metal Single Atoms for Electromagnetic Wave Absorption. Nano-Micro Letters, 2022, 14, 27.	27.0	86
11	Photothermal-effect-promoted interfacial OH ^{â^²} filling and the conversion of carrier type in (Co _{1â^²<i>x</i>} Ni _{<i>x</i>}) ₃ C during water oxidation. Journal of Materials Chemistry A, 2022, 10, 8258-8267.	10.3	6
12	Metal-organic framework interface engineering for highly efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 619, 148-157.	9.4	16
13	Atomically Dispersed Ni Single-Atoms Anchored on N-Doped Graphene Aerogels for Highly Efficient Electromagnetic Wave Absorption. Chinese Physics Letters, 2022, 39, 045201.	3.3	5
14	MILâ€47(V) Derived V ₂ O ₅ @Carbon Core‧hell Microcuboids with Oxygen Vacancies as Advanced Conversion Cathodes for Highâ€Performance Zincâ€Ion Batteries. ChemElectroChem, 2022, 9, .	3.4	12
15	Hierarchically 3D bifunctional catalysts assembled with 1D MoC core/branched N-doped CNT arrays for zinc-air batteries. Electrochimica Acta, 2021, 367, 137522.	5.2	7
16	Tailing size and impedance matching characteristic of nitrogen-doped carbon nanotubes for electromagnetic wave absorption. Carbon, 2021, 174, 79-89.	10.3	46
17	Dielectric relaxation and magnetic resonance of nitrogen-doped graphene-coated FeNi nanoparticles on nitrogen-doped carbon nanosheets. Journal of Alloys and Compounds, 2021, 854, 157212.	5.5	7
18	Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting. Chemical Engineering Journal, 2021, 406, 126815.	12.7	88

#	Article	IF	CITATIONS
19	Nitrogen and Boron Co-Doped Carbon Nanotubes Embedded with Nickel Nanoparticles as Highly Efficient Electromagnetic Wave Absorbing Materials. Chinese Physics Letters, 2021, 38, 015201.	3.3	6
20	N-doped carbon nanotube arrays on reduced graphene oxide as multifunctional materials for energy devices and absorption of electromagnetic wave. Carbon, 2021, 177, 216-225.	10.3	88
21	Lightweight, Fireâ€Retardant, and Antiâ€Compressed Honeycombedâ€Like Carbon Aerogels for Thermal Management and Highâ€Efficiency Electromagnetic Absorbing Properties. Small, 2021, 17, e2102032.	10.0	141
22	Nanointerface engineering of cobalt sulfide/manganese sulfate hollow spheres for electromagnetic wave absorption. Applied Surface Science, 2021, 554, 149238.	6.1	17
23	The monodisperse nickel phosphide mosaic nanocrystals in situ grown on reduced graphene oxide with excellent electromagnetic wave absorption properties. Journal of Solid State Chemistry, 2021, 300, 122234.	2.9	10
24	Partially contacted NixSy@N, S-codoped carbon yolk-shelled structures for efficient microwave absorption. Carbon, 2021, 182, 276-286.	10.3	47
25	Hierarchically three-dimensional structure assembled with yolk-shelled spheres-supported nitrogen-doped carbon nanotubes for electromagnetic wave absorption. Carbon, 2021, 185, 177-185.	10.3	31
26	Three-dimensional FeP nanotube arrays fabricated through electrostatic-repulsion-limited-nucleation strategy for high-efficiency hydrogen evolution. Chemical Engineering Journal, 2021, 423, 130240.	12.7	23
27	Tailoring electronic properties and polarization relaxation behavior of MoS2 monolayers for electromagnetic energy dissipation and wireless pressure micro-sensor. Chemical Engineering Journal, 2021, 425, 131700.	12.7	35
28	Conductive CuCoâ€Based Bimetal Organic Framework for Efficient Hydrogen Evolution. Advanced Materials, 2021, 33, e2106781.	21.0	116
29	Tuning Dielectric Loss of SiO2@CNTs for Electromagnetic Wave Absorption. Nanomaterials, 2021, 11, 2636.	4.1	8
30	Regulation of Morphology and Electronic Structure of FeCoNi Layered Double Hydroxides for Highly Active and Stable Water Oxidization Catalysts. Advanced Energy Materials, 2021, 11, .	19.5	94
31	Micro-nanospheres assembled with helically coiled nitrogen-doped carbon nanotubes: Fabrication and microwave absorption properties. Materials and Design, 2020, 186, 108290.	7.0	27
32	Abundant hot-spot construction between Ni/C nanotubes with enhanced localized surface plasmon resonance for Radar wave absorption. Applied Surface Science, 2020, 504, 144592.	6.1	14
33	Cobaltâ€Encapsulated Nitrogenâ€Doped Carbon Nanotube Arrays for Flexible Zinc–Air Batteries. Small Methods, 2020, 4, 1900571.	8.6	91
34	CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chemical Engineering Journal, 2020, 383, 123208.	12.7	246
35	Three-dimensional architectures assembled with branched metal nanoparticle-encapsulated nitrogen-doped carbon nanotube arrays for absorption of electromagnetic wave. Journal of Alloys and Compounds, 2020, 821, 153267.	5.5	14
36	N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon, 2020, 159, 357-365.	10.3	185

YUJIN CHEN

#	Article	IF	CITATIONS
37	Self-supported N-doped CNT arrays for flexible Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 18162-18172.	10.3	81
38	NiFe ₂ O ₄ hollow nanoparticles of small sizes on carbon nanotubes for oxygen evolution. Catalysis Science and Technology, 2020, 10, 6970-6976.	4.1	9
39	General Fabrication of 3D Hierarchically Structured Bamboo-like Nitrogen-Doped Carbon Nanotube Arrays on 1D Nitrogen-Doped Carbon Skeletons for Highly Efficient Electromagnetic Wave Energy Attenuation. ACS Applied Materials & Interfaces, 2020, 12, 40692-40701.	8.0	69
40	Near-Infrared Upconversion Mesoporous Tin Oxide Bio-Photocatalyst for H ₂ O ₂ -Activatable O ₂ -Generating Magnetic Targeting Synergetic Treatment. ACS Applied Materials & Interfaces, 2020, 12, 41047-41061.	8.0	26
41	Direct observation of chemical origins in crystalline (Ni _x Co _{1â^²x}) ₂ B oxygen evolution electrocatalysts. Catalysis Science and Technology, 2020, 10, 2165-2172.	4.1	10
42	Urchin-like Amorphous Nitrogen-Doped Carbon Nanotubes Encapsulated with Transition-Metal-Alloy@Graphene Core@Shell Nanoparticles for Microwave Energy Attenuation. ACS Applied Materials & Interfaces, 2020, 12, 9628-9636.	8.0	62
43	General strategy for fabrication of N-doped carbon nanotube/reduced graphene oxide aerogels for dissipation and conversion of electromagnetic energy. Journal of Materials Chemistry C, 2020, 8, 7847-7857.	5.5	51
44	Dielectric behavior of single iron atoms dispersed on nitrogen-doped nanocarbon. Applied Physics Letters, 2020, 116, .	3.3	31
45	Hierarchical Cobalt-Doped Molybdenum–Nickel Nitride Nanowires as Multifunctional Electrocatalysts. ACS Applied Materials & Interfaces, 2019, 11, 27751-27759.	8.0	59
46	Metal organic framework-derived three-dimensional graphene-supported nitrogen-doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading. Carbon, 2019, 155, 233-242.	10.3	109
47	Self-supported tripod-like nickel phosphide nanowire arrays for hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 22412-22419.	10.3	59
48	Three dimensional graphene-supported nitrogen-doped carbon nanotube architectures for attenuation of electromagnetic energy. Journal of Materials Chemistry C, 2019, 7, 11868-11878.	5.5	50
49	Large-Scale Synthesis of Three-Dimensional Reduced Graphene Oxide/Nitrogen-Doped Carbon Nanotube Heteronanostructures as Highly Efficient Electromagnetic Wave Absorbing Materials. ACS Applied Materials & Interfaces, 2019, 11, 39100-39108.	8.0	110
50	Ultrasmall FeNi ₃ N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 1083-1091.	10.3	89
51	The integration of Mo ₂ C-embedded nitrogen-doped carbon with Co encapsulated in nitrogen-doped graphene layers derived from metal–organic-frameworks as a multi-functional electrocatalyst. Nanoscale, 2019, 11, 12563-12572.	5.6	39
52	The surface engineering of cobalt carbide spheres throughÂN, B co-doping achieved by room-temperature <i>in situ</i> anchoring effects for active and durable multifunctional electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 14904-14915.	10.3	88
53	Synthesis and low-temperature sensing property of the porous ZnCo2O4 nanosheets. Journal of Materials Science: Materials in Electronics, 2019, 30, 5357-5365.	2.2	6
54	Porous MoO ₃ /SnO ₂ Nanoflakes with n–n Junctions for Sensing H ₂ S. ACS Applied Nano Materials, 2019, 2, 2418-2425.	5.0	39

YUJIN CHEN

#	Article	IF	CITATIONS
55	Interface-induced enhanced electromagnetic wave absorption property of metal-organic frameworks wrapped by graphene sheets. Journal of Alloys and Compounds, 2019, 780, 718-726.	5.5	26
56	Three-Dimensional Hierarchical MoS ₂ Nanosheets/Ultralong N-Doped Carbon Nanotubes as High-Performance Electromagnetic Wave Absorbing Material. ACS Applied Materials & Interfaces, 2018, 10, 14108-14115.	8.0	170
57	Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2018, 6, 8479-8487.	10.3	134
58	Self-supported cobalt nitride porous nanowire arrays as bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2018, 273, 229-238.	5.2	98
59	An ultra-small NiFe ₂ O ₄ hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property. Nanoscale, 2018, 10, 2697-2703.	5.6	184
60	Nickel Nanoparticle Encapsulated in Few-Layer Nitrogen-Doped Graphene Supported by Nitrogen-Doped Graphite Sheets as a High-Performance Electromagnetic Wave Absorbing Material. ACS Applied Materials & Interfaces, 2018, 10, 1399-1407.	8.0	155
61	Growth of CoFe ₂ O ₄ hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers. Journal of Materials Chemistry C, 2018, 6, 12781-12787.	5.5	82
62	Feâ€Niâ€Mo Nitride Porous Nanotubes for Full Water Splitting and Znâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1802327.	19.5	227
63	Hierarchical Hollow Spheres Assembled with Ultrathin CoMn Double Hydroxide Nanosheets as Trifunctional Electrocatalyst for Overall Water Splitting and Zn Air Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 14641-14651.	6.7	51
64	Enhanced electromagnetic wave absorption induced by void spaces in hollow nanoparticles. Nanoscale, 2018, 10, 18742-18748.	5.6	88
65	Nitrogen-doped carbon nanosheets containing Fe3C nanoparticles encapsulated in nitrogen-doped graphene shells for high-performance electromagnetic wave absorbing materials. Carbon, 2018, 140, 368-376.	10.3	93
66	NiO/Ni/TiO2 nanocables with Schottky/p-n heterojunctions and the improved photocatalytic performance in water splitting under visible light. Journal of Colloid and Interface Science, 2018, 530, 1-8.	9.4	71
67	Fast fabrication of ultrathin CoMn LDH nanoarray as flexible electrode for water oxidation. Electrochimica Acta, 2018, 283, 755-763.	5.2	46
68	Hollow N-Doped Carbon Polyhedron Containing CoNi Alloy Nanoparticles Embedded within Few-Layer N-Doped Graphene as High-Performance Electromagnetic Wave Absorbing Material. ACS Applied Materials & Interfaces, 2018, 10, 24920-24929.	8.0	224
69	Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries. Scientific Reports, 2017, 7, 42772.	3.3	57
70	Highly Stable Threeâ€Dimensional Porous Nickelâ€ŀron Nitride Nanosheets for Full Water Splitting at High Current Densities. Chemistry - A European Journal, 2017, 23, 10187-10194.	3.3	61
71	Highly stable three-dimensional nickel–iron oxyhydroxide catalysts for oxygen evolution reaction at high current densities. Electrochimica Acta, 2017, 245, 770-779.	5.2	37
72	Bimetallic Ni–Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2017, 5, 13648-13658.	10.3	191

#	Article	IF	CITATIONS
73	Incorporation of CoO@Co yolk-shell nanoparticles and ZnO nanoparticles with graphene sheets as lightweight and high-performance electromagnetic wave absorbing material. Journal of Alloys and Compounds, 2017, 711, 552-559.	5.5	37
74	Crystal Co _{<i>x</i>} B (<i>x</i> = 1–3) Synthesized by a Ball-Milling Method as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 10266-10274.	6.7	76
75	Chemical Ni–C Bonding in Ni–Carbon Nanotube Composite by a Microwave Welding Method and Its Induced High-Frequency Radar Frequency Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2017, 9, 40412-40419.	8.0	128
76	N-Doped graphene-supported Co@CoO core–shell nanoparticles as high-performance bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 12046-12053.	10.3	91
77	Hollow CoP nanopaticle/N-doped graphene hybrids as highly active and stable bifunctional catalysts for full water splitting. Nanoscale, 2016, 8, 10902-10907.	5.6	158
78	Hierarchical nickel–cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale, 2016, 8, 19129-19138.	5.6	140
79	Growth of Hollow Transition Metal (Fe, Co, Ni) Oxide Nanoparticles on Graphene Sheets through Kirkendall Effect as Anodes for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 1638-1645.	3.3	55
80	Two-dimensional net-like SnO ₂ /ZnO heteronanostructures for high-performance H ₂ S gas sensor. Journal of Materials Chemistry A, 2016, 4, 1390-1398.	10.3	161
81	Electrochemically activated-iron oxide nanosheet arrays on carbon fiber cloth as a three-dimensional self-supported electrode for efficient water oxidation. Journal of Materials Chemistry A, 2016, 4, 6048-6055.	10.3	66
82	Coupling Hollow Fe ₃ O ₄ –Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material. ACS Applied Materials & Interfaces, 2016, 8, 3730-3735.	8.0	427
83	Porous one-dimensional Mo ₂ C–amorphous carbon composites: high-efficient and durable electrocatalysts for hydrogen generation. Physical Chemistry Chemical Physics, 2015, 17, 16609-16614.	2.8	52
84	Graphene/N-doped amorphous carbon sheet for hydrogen evolution. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	1
85	Molybdenum carbide nanocrystal embedded N-doped carbon nanotubes as electrocatalysts for hydrogen generation. Journal of Materials Chemistry A, 2015, 3, 5783-5788.	10.3	198
86	A strategy to synergistically increase the number of active edge sites and the conductivity of MoS2 nanosheets for hydrogen evolution. Nanoscale, 2015, 7, 8731-8738.	5.6	116
87	Ultrathin MoSe ₂ Nanosheets Decorated on Carbon Fiber Cloth as Binder-Free and High-Performance Electrocatalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 14170-14175.	8.0	165
88	Synthesis and H2S sensing performance of MoO3/Fe2(MoO4)3 yolk/shell nanostructures. RSC Advances, 2015, 5, 37703-37709.	3.6	31
89	Hierarchical nanosheet-based CoMoO ₄ –NiMoO ₄ nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 22750-22758.	10.3	140
90	Hierarchical nanosheet-based NiMoO ₄ nanotubes: synthesis and high supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 739-745.	10.3	151

#	Article	IF	CITATIONS
91	Growth of Ultrathin MoS ₂ Nanosheets with Expanded Spacing of (002) Plane on Carbon Nanotubes for High-Performance Sodium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2014, 6, 21880-21885.	8.0	230
92	Growth of Fe ₃ O ₄ Nanorod Arrays on Graphene Sheets for Application in Electromagnetic Absorption Fields. ChemPhysChem, 2014, 15, 2261-2266.	2.1	45
93	Growth of \hat{I}^3 -Fe ₂ O ₃ nanosheet arrays on graphene for electromagnetic absorption applications. RSC Advances, 2014, 4, 21510-21516.	3.6	47
94	Branched polyaniline/molybdenum oxide organic/inorganic heteronanostructures: synthesis and electromagnetic absorption properties. Journal of Materials Chemistry A, 2013, 1, 11795.	10.3	63
95	Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties. Nanoscale, 2013, 5, 12296.	5.6	206
96	Graphene–Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties. Journal of Applied Physics, 2013, 113, .	2.5	203
97	Electromagnetic absorption properties of graphene/Fe nanocomposites. Materials Research Bulletin, 2013, 48, 3362-3366.	5.2	92
98	Threeâ€Dimensional Hierarchical Architectures Constructed by Graphene/MoS ₂ Nanoflake Arrays and Their Rapid Charging/Discharging Properties as Lithiumâ€Ion Battery Anodes. Chemistry - A European Journal, 2013, 19, 5818-5823.	3.3	141
99	Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass. Applied Physics Letters, 2013, 102, .	3.3	47
100	Graphene/porous cobalt nanocomposite and its noticeable electrochemical hydrogen storage ability at room temperature. Journal of Materials Chemistry, 2012, 22, 5924.	6.7	79
101	Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. Journal of Materials Chemistry, 2012, 22, 21679.	6.7	455
102	Mechanical alloying preparation of fullerene-like Co3C nanoparticles with high hydrogen storage ability. International Journal of Hydrogen Energy, 2012, 37, 17126-17130.	7.1	27
103	Controlled synthesis and shape-dependent electromagnetic wave absorption characteristics of porous Fe3O4 sub-micro particles. Science China: Physics, Mechanics and Astronomy, 2012, 55, 25-32.	5.1	5
104	Synthesis and H ₂ S Sensing Properties of CuOâ^'SnO ₂ Core/Shell PN-Junction Nanorods. Journal of Physical Chemistry C, 2008, 112, 12157-12160.	3.1	258
105	Super-Stable, High-Quality Fe3O4 Dendron-Nanocrystals Dispersible in Both Organic and Aqueous Solutions. Advanced Materials, 2005, 17, 1429-1432.	21.0	140