

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5647286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environmental Pollution, 2013, 175, 22-29.	7.5	530
2	Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science, 2019, 363, .	12.6	479
3	Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chemical Engineering Journal, 2014, 246, 373-382.	12.7	378
4	Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. Journal of Hazardous Materials, 2016, 310, 235-245.	12.4	338
5	Removal of Antibiotic Florfenicol by Sulfide-Modified Nanoscale Zero-Valent Iron. Environmental Science & Technology, 2017, 51, 11269-11277.	10.0	251
6	Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Research, 2018, 129, 277-286.	11.3	193
7	Effects of Sulfamethazine on Denitrification and the Associated N ₂ O Release in Estuarine and Coastal Sediments. Environmental Science & Technology, 2015, 49, 326-333.	10.0	169
8	Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chemical Engineering Journal, 2018, 334, 508-518.	12.7	123
9	Occurrence and distribution of antibiotics in the surface sediments of the Yangtze Estuary and nearby coastal areas. Marine Pollution Bulletin, 2014, 83, 317-323.	5.0	120
10	Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol. Chemical Engineering Journal, 2019, 359, 713-722.	12.7	120
11	Environmental Risk Implications of Metals in Sludges from Waste Water Treatment Plants: The Discovery of Vast Stores of Metal-Containing Nanoparticles. Environmental Science & Technology, 2017, 51, 4831-4840.	10.0	108
12	Organochlorine pesticides in surface sediments and suspended particulate matters from the Yangtze estuary, China. Environmental Pollution, 2008, 156, 168-173.	7.5	104
13	Occurrence, distribution and risk assessment of estrogens in surface water, suspended particulate matter, and sediments of the Yangtze Estuary. Chemosphere, 2015, 127, 109-116.	8.2	100
14	Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. Environmental Pollution, 2018, 242, 576-584.	7.5	93
15	Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study. Science of the Total Environment, 2016, 557-558, 740-753.	8.0	90
16	Sorption and leaching behaviors between aged MPs and BPA in water: The role of BPA binding modes within plastic matrix. Water Research, 2021, 195, 116956.	11.3	86
17	Occurrence of coal and coal-derived particle-bound polycyclic aromatic hydrocarbons (PAHs) in a river floodplain soil. Environmental Pollution, 2008, 151, 121-129.	7.5	78
18	Antibiotic resistance genes in biofilms on plastic wastes in an estuarine environment. Science of the Total Environment, 2020, 745, 140916.	8.0	77

#	Article	lF	CITATIONS
19	Characteristics of microbial community indicate anthropogenic impact on the sediments along the Yangtze Estuary and its coastal area, China. Science of the Total Environment, 2019, 648, 306-314.	8.0	70
20	Seasonal variation, flux estimation, and source analysis of dissolved emerging organic contaminants in the Yangtze Estuary, China. Marine Pollution Bulletin, 2017, 125, 208-215.	5.0	69
21	Selected emerging organic contaminants in the Yangtze Estuary, China: A comprehensive treatment of their association with aquatic colloids. Journal of Hazardous Materials, 2015, 283, 14-23.	12.4	68
22	Nanoparticles in road dust from impervious urban surfaces: distribution, identification, and environmental implications. Environmental Science: Nano, 2016, 3, 534-544.	4.3	68
23	Sulphate-reducing bacteria (SRB) in the Yangtze Estuary sediments: Abundance, distribution and implications for the bioavailibility of metals. Science of the Total Environment, 2018, 634, 296-304.	8.0	66
24	Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland, Shanghai, China. Chemosphere, 2012, 89, 221-227.	8.2	65
25	Environmental estrogens in a drinking water reservoir area in Shanghai: Occurrence, colloidal contribution and risk assessment. Science of the Total Environment, 2014, 487, 785-791.	8.0	65
26	Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China. Marine Pollution Bulletin, 2018, 126, 141-149.	5.0	53
27	Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters. Journal of Hazardous Materials, 2015, 299, 241-248.	12.4	52
28	Fast degradation, large capacity, and high electron efficiency of chloramphenicol removal by different carbon-supported nanoscale zerovalent iron. Journal of Hazardous Materials, 2020, 384, 121253.	12.4	52
29	Importance of a Nanoscience Approach in the Understanding of Major Aqueous Contamination Scenarios: Case Study from a Recent Coal Ash Spill. Environmental Science & Technology, 2015, 49, 3375-3382.	10.0	48
30	Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burning. Nature Communications, 2017, 8, 194.	12.8	44
31	Modeling and evaluating spatial variation of polycyclic aromatic hydrocarbons in urban lake surface sediments in Shanghai. Environmental Pollution, 2018, 235, 1-10.	7.5	44
32	Environmental estrogen exposure converts lipid metabolism in male fish to a female pattern mediated by AMPK and mTOR signaling pathways. Journal of Hazardous Materials, 2020, 394, 122537.	12.4	41
33	Sorption of polycyclic aromatic hydrocarbons (PAHs) to carbonaceous materials in a river floodplain soil. Environmental Pollution, 2008, 156, 1357-1363.	7.5	37
34	Antibiotic resistance genes in sediments of the Yangtze Estuary: From 2007 to 2019. Science of the Total Environment, 2020, 744, 140713.	8.0	37
35	PCBs and OCPs in fish along coastal fisheries in China: Distribution and health risk assessment. Marine Pollution Bulletin, 2016, 111, 483-487.	5.0	36
36	Bacterial community structure in the intertidal biofilm along the Yangtze Estuary, China. Marine Pollution Bulletin, 2017, 124, 314-320.	5.0	35

#	Article	IF	CITATIONS
37	Antibiotic resistance genes (ARGs) and their associated environmental factors in the Yangtze Estuary, China: From inlet to outlet. Marine Pollution Bulletin, 2020, 158, 111360.	5.0	34
38	PAHs in indoor dust samples in Shanghai's universities: levels, sources and human exposure. Environmental Geochemistry and Health, 2012, 34, 587-596.	3.4	33
39	Nutrients and contaminants in tissues of five fish species obtained from Shanghai markets: Risk–benefit evaluation from human health perspectives. Science of the Total Environment, 2015, 536, 933-945.	8.0	32
40	Impact of ZnO nanoparticles on the antibiotic resistance genes (ARGs) in estuarine water: ARG variations and their association with the microbial community. Environmental Science: Nano, 2019, 6, 2405-2419.	4.3	31
41	Titanium and zinc-containing nanoparticles in estuarine sediments: Occurrence and their environmental implications. Science of the Total Environment, 2021, 754, 142388.	8.0	28
42	Metal-Containing Nanoparticles in Low-Rank Coal-Derived Fly Ash from China: Characterization and Implications toward Human Lung Toxicity. Environmental Science & Technology, 2021, 55, 6644-6654.	10.0	28
43	PAH determination based on a rapid and novel gas purge-microsyringe extraction (GP-MSE) technique in road dust of Shanghai, China: Characterization, source apportionment, and health risk assessment. Science of the Total Environment, 2016, 557-558, 688-696.	8.0	26
44	Simultaneous determination of steroidal and phenolic endocrine disrupting chemicals in fish by ultra-high-performance liquid chromatography–mass spectrometry/mass spectrometry. Journal of Chromatography A, 2013, 1278, 126-132.	3.7	25
45	Characterization and sources analysis of polycyclic aromatic hydrocarbons in surface sediments in the Yangtze River Estuary. Environmental Earth Sciences, 2015, 73, 2453-2462.	2.7	24
46	Cytotoxicity of TiO2nanoparticles toward Escherichia coli in an aquatic environment: effects of nanoparticle structural oxygen deficiency and aqueous salinity. Environmental Science: Nano, 2017, 4, 1178-1188.	4.3	24
47	Indigenous PAH degraders along the gradient of the Yangtze Estuary of China: Relationships with pollutants and their bioremediation implications. Marine Pollution Bulletin, 2019, 142, 419-427.	5.0	24
48	Simple Method for the Extraction and Determination of Ti-, Zn-, Ag-, and Au-Containing Nanoparticles in Sediments Using Single-Particle Inductively Coupled Plasma Mass Spectrometry. Environmental Science & Technology, 2021, 55, 10354-10364.	10.0	22
49	Mechanisms responsible for N2O emissions from intertidal soils of the Yangtze Estuary. Science of the Total Environment, 2020, 716, 137073.	8.0	20
50	Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China's estuaries. Environmental Pollution, 2022, 301, 119015.	7.5	20
51	Impacts of Proteins on Dissolution and Sulfidation of Silver Nanowires in an Aquatic Environment: Importance of Surface Charges. Environmental Science & Technology, 2020, 54, 5560-5568.	10.0	19
52	New insights into the colloidal stability of graphene oxide in aquatic environment: Interplays of photoaging and proteins. Water Research, 2021, 200, 117213.	11.3	19
53	Trophodynamics and parabolic behaviors of polycyclic aromatic hydrocarbons in an urbanized lake food web, Shanghai. Ecotoxicology and Environmental Safety, 2019, 178, 17-24.	6.0	18
54	Human activities can drive sulfate-reducing bacteria community in Chinese intertidal sediments by affecting metal distribution. Science of the Total Environment, 2021, 786, 147490.	8.0	17

#	Article	IF	CITATIONS
55	Application of a multi-method approach in characterization of natural aquatic colloids from different sources along Huangpu River in Shanghai, China. Science of the Total Environment, 2016, 554-555, 228-236.	8.0	16
56	Nitrogen fixation in surface sediments of the East China Sea: Occurrence and environmental implications. Marine Pollution Bulletin, 2018, 137, 542-548.	5.0	16
57	Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. Science of the Total Environment, 2020, 698, 134298.	8.0	16
58	Occurrence and distribution of PAHs and microbial communities in nearshore sediments of the Knysna Estuary, South Africa. Environmental Pollution, 2021, 270, 116083.	7.5	16
59	New insights into the facilitated dissolution and sulfidation of silver nanoparticles under simulated sunlight irradiation in aquatic environments by extracellular polymeric substances. Environmental Science: Nano, 2021, 8, 748-757.	4.3	15
60	Increasing mercury risk of fly ash generated from coal-fired power plants in China. Journal of Hazardous Materials, 2022, 429, 128296.	12.4	15
61	Comparing and modeling sedimentary profiles of elemental carbon and polycyclic aromatic hydrocarbons between early- and newly-urbanized areas in Shanghai. Environmental Pollution, 2019, 244, 971-979.	7.5	14
62	Pulmonary Exposure to Magnéli Phase Titanium Suboxides Results in Significant Macrophage Abnormalities and Decreased Lung Function. Frontiers in Immunology, 2019, 10, 2714.	4.8	12
63	Community dynamics and activity of nirS-harboring denitrifiers in sediments of the Indus River Estuary. Marine Pollution Bulletin, 2020, 153, 110971.	5.0	12
64	Extraction and quantification of metal-containing nanoparticles in marine shellfish based on single particle inductively coupled plasma-mass spectrometry technique. Journal of Hazardous Materials, 2022, 424, 127383.	12.4	12
65	Sorption behavior of phenanthrene in Yangtze estuarine sediments: Sequential separation. Marine Pollution Bulletin, 2011, 62, 1025-1031.	5.0	11
66	Molecular characterization of PAHs based on land use analysis and multivariate source apportionment in multiple phases of the Yangtze estuary, China. Environmental Sciences: Processes and Impacts, 2018, 20, 531-543.	3.5	11
67	Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in sediments of the Indus Estuary. Estuarine, Coastal and Shelf Science, 2020, 243, 106925.	2.1	11
68	Nanoparticles in the Earth surface systems and their effects on the environment and resource. Gondwana Research, 2022, 110, 370-392.	6.0	11
69	Plastic properties affect the composition of prokaryotic and eukaryotic communities and further regulate the ARGs in their surface biofilms. Science of the Total Environment, 2022, 839, 156362.	8.0	11
70	The Case for a Critical Zone Science Approach to Research on Estuarine and Coastal Wetlands in the Anthropocene. Estuaries and Coasts, 2021, 44, 911-920.	2.2	10
71	Impacts of photoaging on the interactions between graphene oxide and proteins: Mechanisms and biological effect. Water Research, 2022, 216, 118371.	11.3	10
72	Vast emission of Fe- and Ti-containing nanoparticles from representative coal-fired power plants in China and environmental implications. Science of the Total Environment, 2022, 838, 156070.	8.0	10

#	Article	IF	CITATIONS
73	Phenanthrene sorption to Chinese coal: Importance of coal's geochemical properties. Journal of Hazardous Materials, 2011, 192, 86-92.	12.4	9
74	Sulfate-reducing bacteria (SRB) can enhance the uptake of silver-containing nanoparticles by a wetland plant. Environmental Science: Nano, 2020, 7, 912-925.	4.3	7
75	Fast Screening of Coal Fly Ash with Potential for Rare Earth Element Recovery by Electron Paramagnetic Resonance Spectroscopy. Environmental Science & Technology, 2021, 55, 16716-16722.	10.0	6
76	Polycyclic aromatic hydrocarbons (PAHs) in Chinese coal: occurrence and sorption mechanism. Environmental Earth Sciences, 2014, 71, 623-630.	2.7	5
77	New insights into the enhanced transport of uncoated and polyvinylpyrrolidone-coated silver nanoparticles in saturated porous media by dissolved black carbons. Chemosphere, 2021, 283, 131159.	8.2	5
78	Impacts of sulfidation of silver nanowires on the degradation of bisphenol A in water. Ecotoxicology and Environmental Safety, 2019, 185, 109739.	6.0	2