## Jean Celli

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5646783/publications.pdf

Version: 2024-02-01

|          |                | 81900        | 144013         |
|----------|----------------|--------------|----------------|
| 58       | 9,395          | 39           | 57             |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
|          |                |              |                |
| 63       | 63             | 63           | 14463          |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.                                                                                                                                    | 9.1  | 3,122     |
| 2  | <i>Brucella</i> Evades Macrophage Killing via VirB-dependent Sustained Interactions with the Endoplasmic Reticulum. Journal of Experimental Medicine, 2003, 198, 545-556.                                                                     | 8.5  | 502       |
| 3  | Noncanonical Inflammasome Activation of Caspase-4/Caspase-11 Mediates Epithelial Defenses against Enteric Bacterial Pathogens. Cell Host and Microbe, 2014, 16, 249-256.                                                                      | 11.0 | 371       |
| 4  | Dissemination of invasive i>Salmonella   i>via bacterial-induced extrusion of mucosal epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17733-17738.                                     | 7.1  | 354       |
| 5  | Autophagy-mediated reentry of <i>Francisella tularensis</i> into the endocytic compartment after cytoplasmic replication. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14578-14583.            | 7.1  | 315       |
| 6  | Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO Journal, 2003, 22, 1451-1460.                                                                                                 | 7.8  | 310       |
| 7  | Selective Subversion of Autophagy Complexes Facilitates Completion of the Brucella Intracellular Cycle. Cell Host and Microbe, 2012, 11, 33-45.                                                                                               | 11.0 | 290       |
| 8  | <i>Brucella </i> Intracellular Replication Requires Trafficking Through the Late Endosomal/Lysosomal Compartment. Traffic, 2008, 9, 678-694.                                                                                                  | 2.7  | 255       |
| 9  | Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?. Nature Reviews Microbiology, 2015, 13, 71-82.                                                                                                        | 28.6 | 209       |
| 10 | Intracellular biology and virulence determinants of <i>Francisella tularensis </i> revealed by transcriptional profiling inside macrophages. Cellular Microbiology, 2009, 11, 1128-1150.                                                      | 2.1  | 180       |
| 11 | The <i>Francisella tularensis</i> pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Molecular Microbiology, 2009, 74, 1459-1470.                                                           | 2.5  | 171       |
| 12 | Surviving inside a macrophage: The many ways of Brucella. Research in Microbiology, 2006, 157, 93-98.                                                                                                                                         | 2.1  | 158       |
| 13 | Brucella coopts the small GTPase Sar1 for intracellular replication. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1673-1678.                                                                   | 7.1  | 155       |
| 14 | Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins. PLoS Pathogens, 2013, 9, e1003556.                                                                                                                 | 4.7  | 154       |
| 15 | Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Molecular Microbiology, 2002, 43, 1089-1103.                                                  | 2.5  | 153       |
| 16 | The Early Phagosomal Stage of <i>Francisella tularensis</i> Determines Optimal Phagosomal Escape and <i>Francisella</i> Pathogenicity Island Protein Expression. Infection and Immunity, 2008, 76, 5488-5499.                                 | 2.2  | 150       |
| 17 | Pathogenic trickery: deception of host cell processes. Nature Reviews Molecular Cell Biology, 2001, 2, 578-588.                                                                                                                               | 37.0 | 145       |
| 18 | Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Molecular Microbiology, 2002, 28, 103-117. | 2.5  | 143       |

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mechanisms of Francisella tularensis Intracellular Pathogenesis. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010314-a010314.                                             | 6.2  | 132       |
| 20 | Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO Journal, 2001, 20, 1245-1258.                            | 7.8  | 123       |
| 21 | Organelle robbery: Brucella interactions with the endoplasmic reticulum. Current Opinion in Microbiology, 2004, 7, 93-97.                                                           | 5.1  | 118       |
| 22 | Sensing of Bacterial Type IV Secretion via the Unfolded Protein Response. MBio, 2013, 4, e00418-12.                                                                                 | 4.1  | 112       |
| 23 | Eating the strangers within: host control of intracellular bacteria via xenophagy. Cellular Microbiology, 2011, 13, 1319-1327.                                                      | 2.1  | 111       |
| 24 | Enteropathogenic Escherichia coli (EPEC) attachment to epithelial cells: exploiting the host cell cytoskeleton from the outside. Cellular Microbiology, 2000, 2, 1-9.               | 2.1  | 105       |
| 25 | The changing nature of the <i>Brucella</i> -containing vacuole. Cellular Microbiology, 2015, 17, 951-958.                                                                           | 2.1  | 96        |
| 26 | The Intracellular Life Cycle of <i>Brucella</i> spp. Microbiology Spectrum, 2019, 7, .                                                                                              | 3.0  | 95        |
| 27 | Enteropathogenic <i>Escherichia coli</i> Inhibits Phagocytosis. Infection and Immunity, 1999, 67, 490-495.                                                                          | 2.2  | 82        |
| 28 | The Francisella Intracellular Life Cycle: Toward Molecular Mechanisms of Intracellular Survival and Proliferation. Frontiers in Microbiology, 2010, 1, 138.                         | 3.5  | 80        |
| 29 | Cytosolic clearance of replication-deficient mutants reveals <i><i>Francisella tularensis</i><ii>interactions with the autophagic pathway. Autophagy, 2012, 8, 1342-1356.</ii></i>  | 9.1  | 78        |
| 30 | Direct and Indirect Impairment of Human Dendritic Cell Function by Virulent <i>Francisella tularensis</i> Schu S4. Infection and Immunity, 2009, 77, 180-195.                       | 2.2  | 77        |
| 31 | Phagocytic Receptors Dictate Phagosomal Escape and Intracellular Proliferation of Francisella tularensis. Infection and Immunity, 2011, 79, 2204-2214.                              | 2.2  | 77        |
| 32 | A Brucella Type IV Effector Targets the COG Tethering Complex to Remodel Host Secretory Traffic and Promote Intracellular Replication. Cell Host and Microbe, 2017, 22, 317-329.e7. | 11.0 | 72        |
| 33 | Construction and Characterization of an Attenuated Purine Auxotroph in a Francisella tularensis Live Vaccine Strain. Infection and Immunity, 2006, 74, 4452-4461.                   | 2.2  | 71        |
| 34 | Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host and Microbe, 2016, 20, 573-583.                     | 11.0 | 68        |
| 35 | Bacterial avoidance of phagocytosis. Trends in Microbiology, 2002, 10, 232-237.                                                                                                     | 7.7  | 66        |
| 36 | Restricted cytosolic growth of Francisella tularensis subsp. tularensis by IFN- $\hat{l}^3$ activation of macrophages. Microbiology (United Kingdom), 2010, 156, 327-339.           | 1.8  | 63        |

| #  | Article                                                                                                                                                                                                    | IF   | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Objections to the transfer of Francisella novicida to the subspecies rank of Francisella tularensis. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1717-1718.               | 1.7  | 62        |
| 38 | The <i>Francisella </i> O-antigen mediates survival in the macrophage cytosol via autophagy avoidance. Cellular Microbiology, 2014, 16, 862-877.                                                           | 2.1  | 61        |
| 39 | A Legionella pneumophila Effector Protein Encoded in a Region of Genomic Plasticity Binds to Dot/Icm-Modified Vacuoles. PLoS Pathogens, 2009, 5, e1000278.                                                 | 4.7  | 59        |
| 40 | A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host and Microbe, 2018, 24, 285-295.e8.                                         | 11.0 | 53        |
| 41 | SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole. PLoS Pathogens, 2019, 15, e1007959.                                                        | 4.7  | 52        |
| 42 | Low Dose Vaccination with Attenuated Francisella tularensis Strain SchuS4 Mutants Protects against Tularemia Independent of the Route of Vaccination. PLoS ONE, 2012, 7, e37752.                           | 2.5  | 33        |
| 43 | Avoidance and Subversion of Eukaryotic Homeostatic Autophagy Mechanisms by Bacterial Pathogens.<br>Journal of Molecular Biology, 2016, 428, 3387-3398.                                                     | 4.2  | 33        |
| 44 | Postreplication Roles of the $\langle i \rangle$ Brucella $\langle i \rangle$ VirB Type IV Secretion System Uncovered via Conditional Expression of the VirB11 ATPase. MBio, 2016, 7, .                    | 4.1  | 31        |
| 45 | Acid Phosphatases Do Not Contribute to the Pathogenesis of Type A <i>Francisella tularensis</i> Infection and Immunity, 2010, 78, 59-67.                                                                   | 2.2  | 28        |
| 46 | Host–microbe interaction systems biology: lifecycle transcriptomics and comparative genomics. Future Microbiology, 2010, 5, 205-219.                                                                       | 2.0  | 27        |
| 47 | IglE Is an Outer Membrane-Associated Lipoprotein Essential for Intracellular Survival and Murine<br>Virulence of Type A Francisella tularensis. Infection and Immunity, 2013, 81, 4026-4040.               | 2.2  | 27        |
| 48 | Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP. MBio, 2019, 10, . | 4.1  | 27        |
| 49 | Use of an excision reporter plasmid to study the intracellular mobility of the conjugative transposon Tn916 in Gram-positive bacteria. Microbiology (United Kingdom), 1997, 143, 1253-1261.                | 1.8  | 23        |
| 50 | Epistatic Interplay between Type IV Secretion Effectors Engages the Small GTPase Rab2 in the <i>Brucella</i> Intracellular Cycle. MBio, 2020, 11, .                                                        | 4.1  | 23        |
| 51 | Structure-Function Analysis of DipA, a Francisella tularensis Virulence Factor Required for Intracellular Replication. PLoS ONE, 2013, 8, e67965.                                                          | 2.5  | 19        |
| 52 | FTT0831c/FTL_0325 Contributes to Francisella tularensis Cell Division, Maintenance of Cell Shape, and Structural Integrity. Infection and Immunity, 2014, 82, 2935-2948.                                   | 2.2  | 15        |
| 53 | Transcriptional analysis of the fix ABCXORF1 region of Azorhizobium caulinodans suggests post-transcriptional processing of the fix ABCXORF1 mRNA. Molecular Genetics and Genomics, 1992, 235, 422-431.    | 2.4  | 12        |
| 54 | Intracellular Localization of Brucella abortus and Francisella tularensis in Primary Murine Macrophages., 2008, 431, 133-145.                                                                              |      | 12        |

| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A <i>Brucella</i> effector modulates the Arf6â€Rab8a GTPase cascade to promote intravacuolar replication. EMBO Journal, 2021, 40, e107664.                                                                                                                             | 7.8  | 11        |
| 56 | The $\langle i \rangle$ Brucella $\langle i \rangle$ effector BspL targets the ER-associated degradation (ERAD) pathway and delays bacterial egress from infected cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1  | 9         |
| 57 | LRSAM1, an E3ÂUbiquitin Ligase with a Sense for Bacteria. Cell Host and Microbe, 2012, 12, 735-736.                                                                                                                                                                    | 11.0 | 8         |
| 58 | The Intracellular Life Cycle of <i>Brucella</i> spp , 0, , 101-111.                                                                                                                                                                                                    |      | 2         |