## Eiji Kinoshita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/564523/publications.pdf Version: 2024-02-01



FUL KINOSHITA

| #  | Article                                                                                                                                                                                                                                                                              | IF        | CITATIONS               |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|
| 1  | History of Phos-tag technology for phosphoproteomics. Journal of Proteomics, 2022, 252, 104432.                                                                                                                                                                                      | 1.2       | 10                      |
| 2  | Recent advances in the Phos-tag technique focused on the analysis of phosphoproteins in a bacterial two-component system. Journal of Proteomics, 2022, 252, 104429.                                                                                                                  | 1.2       | 4                       |
| 3  | Evaluation of four phosphopeptide enrichment strategies for mass spectrometryâ€based proteomic<br>analysis. Proteomics, 2022, 22, e2100216.                                                                                                                                          | 1.3       | 12                      |
| 4  | Phos-tag-based phosphate affinity chromatographic techniques. Journal of Chromatography Open,<br>2022, , 100051.                                                                                                                                                                     | 0.8       | 0                       |
| 5  | Phos-tag diagonal electrophoresis precisely detects the mobility change of phosphoproteins in Phos-tag SDS-PAGE. Journal of Proteomics, 2021, 231, 104005.                                                                                                                           | 1.2       | 6                       |
| 6  | An assay of human tyrosine protein kinase ABL activity using an Escherichia coli protein expression<br>system. BioTechniques, 2021, 70, 209-217.                                                                                                                                     | 0.8       | 3                       |
| 7  | Characterization of the Binding of Adenosine-5′-monophosphate to a µ-Type Alkoxide-Linked Dinuclear<br>Zinc(II) Complex in Crystal and Solution State. Bulletin of the Chemical Society of Japan, 2021, 94,<br>2670-2677.                                                            | 2.0       | 1                       |
| 8  | Phos-Tag Fluorescent Gel Staining for the Quantitative Detection of His- and Asp-Phosphorylated<br>Proteins. Methods in Molecular Biology, 2021, 2261, 73-78.                                                                                                                        | 0.4       | 1                       |
| 9  | Characterization of Phosphorylation Status and Kinase Activity of Src Family Kinases Expressed in<br>Cell-Based and Cell-Free Protein Expression Systems. Biomolecules, 2021, 11, 1448.                                                                                              | 1.8       | 2                       |
| 10 | Determining Protein Phosphorylation Status Using Antibody Arrays and Phos-Tag Biotin. Methods in<br>Molecular Biology, 2021, 2237, 217-224.                                                                                                                                          | 0.4       | 1                       |
| 11 | Crystal Structure of Bis{1,3-bis[bis(pyridin-2-ylmethyl)amino]propan- 2-olato-dizinc(II)}orthophosphate<br>Tris(perchlorate) Octahydrate,<br>[(Phos-tag) <sub>2</sub> -PO <sub>4</sub> <sup>3â^'</sup> ][ClO <sub>4&amp;<br/>X-ray Structure Analysis Online, 2021, 37, 87-88.</sub> | lt;/sub&g | t;&l <sup>2</sup> ;sup> |
| 12 | Protein-N-myristoylation-dependent phosphorylation of serine 13 of tyrosine kinase Lyn by casein kinase 1Î <sup>3</sup> at the Golgi during intracellular protein traffic. Scientific Reports, 2020, 10, 16273.                                                                      | 1.6       | 11                      |
| 13 | Phos-tag-based micropipette-tip method for analysis of phosphomonoester-type impurities in synthetic<br>oligonucleotides. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life<br>Sciences, 2020, 1151, 122198.                                           | 1.2       | 1                       |
| 14 | An immuno-dot blot assay for screening histidine kinase inhibitors. Analytical Biochemistry, 2020, 600,<br>113765.                                                                                                                                                                   | 1.1       | 5                       |
| 15 | Quantitative analysis of phosphoproteins in a bacterial two-component system using Phos-tag<br>techniques. Denki Eido, 2020, 64, 35-39.                                                                                                                                              | 0.0       | 0                       |
| 16 | A dot-blot-staining method for detecting phosphoproteins with a Phos-tag Aqua fluorescent dye.<br>Journal of Electrophoresis, 2020, 64, 7-11.                                                                                                                                        | 0.2       | 1                       |
| 17 | Increase in constitutively active MEK1 species by introduction of MEK1 mutations identified in cancers.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 62-70.                                                                                               | 1.1       | 10                      |
| 18 | A method for profiling the phosphorylation state of tyrosine protein kinases. Biochimica Et<br>Biophysica Acta - Proteins and Proteomics, 2019, 1867, 71-75.                                                                                                                         | 1.1       | 3                       |

Είμι Κινοσηίτα

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Quantitative monitoring of His and Asp phosphorylation in a bacterial signaling system by using<br>Phosâ€ŧag Magenta/Cyan fluorescent dyes. Electrophoresis, 2019, 40, 3005-3013.                                                                                 | 1.3 | 15        |
| 20 | Gel-based analysis of protein phosphorylation status by rapid fluorometric staining using TAMRA-labeled Phos-tag. Journal of Electrophoresis, 2019, 63, 25-32.                                                                                                    | 0.2 | 5         |
| 21 | A strategy to identify protein-N-myristoylation-dependent phosphorylation reactions of cellular proteins by using Phos-tag SDS-PAGE. PLoS ONE, 2019, 14, e0225510.                                                                                                | 1.1 | 5         |
| 22 | Enrichment of Low-Molecular-Weight Phosphorylated Biomolecules Using Phos-Tag Tip.<br>Neuromethods, 2019, , 75-84.                                                                                                                                                | 0.2 | 0         |
| 23 | A simple method for determining the ligand affinity toward a zinc-enzyme model by using a TAMRA/TAMRA interaction. Dalton Transactions, 2018, 47, 1841-1848.                                                                                                      | 1.6 | 3         |
| 24 | 4′,6-Diamidino-2-Phenylindole Distinctly Labels Tau Deposits. Journal of Histochemistry and Cytochemistry, 2018, 66, 737-751.                                                                                                                                     | 1.3 | 2         |
| 25 | Zn(II)–Phos-Tag SDS-PAGE for Separation and Detection of a DNA Damage-Related Signaling Large<br>Phosphoprotein. Methods in Molecular Biology, 2017, 1599, 113-126.                                                                                               | 0.4 | 6         |
| 26 | A Phosâ€ŧagâ€based micropipetteâ€ŧip method for rapid and selective enrichment of phosphopeptides.<br>Electrophoresis, 2017, 38, 2447-2455.                                                                                                                       | 1.3 | 22        |
| 27 | Specific glutamic acid residues in targeted proteins induce exaggerated retardations in Phosâ€ŧag<br>SDSâ€PAGE migration. Electrophoresis, 2017, 38, 1139-1146.                                                                                                   | 1.3 | 6         |
| 28 | TAMRA/TAMRA Fluorescence Quenching Systems for the Activity Assay of Alkaline Phosphatase.<br>Sensors, 2017, 17, 1877.                                                                                                                                            | 2.1 | 17        |
| 29 | Phos-tag SDS-PAGE methodology that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1. Denki Eido, 2017, 61, 9-15.                                                                                                         | 0.0 | Ο         |
| 30 | A Phosâ€ŧag SDSâ€₽AGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1. Proteomics, 2016, 16, 1825-1836.                                                                                                     | 1.3 | 19        |
| 31 | A novel thiol-affinity micropipette tip method using zinc(II)–cyclen-attached agarose beads for<br>enrichment of cysteine-containing molecules. Journal of Chromatography B: Analytical Technologies<br>in the Biomedical and Life Sciences, 2016, 1031, 195-201. | 1.2 | 3         |
| 32 | Phosphopeptide Detection with Biotin-Labeled Phos-tag. Methods in Molecular Biology, 2016, 1355, 17-29.                                                                                                                                                           | 0.4 | 6         |
| 33 | Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite<br>Sensor Kinases by Using Phos-Tag SDS-PACE. PLoS ONE, 2016, 11, e0148294.                                                                                      | 1.1 | 25        |
| 34 | Improving the Electrotransfer Efficiency of Target Phosphoprotein from Phos-tag SDS-PAGE Gel.<br>Bunseki Kagaku, 2015, 64, 501-509.                                                                                                                               | 0.1 | 1         |
| 35 | The Cutting Edge of Affinity Electrophoresis Technology. Proteomes, 2015, 3, 42-55.                                                                                                                                                                               | 1.7 | 14        |
| 36 | Functional Characterization of the Receiver Domain for Phosphorelay Control in Hybrid Sensor<br>Kinases. PLoS ONE, 2015, 10, e0132598.                                                                                                                            | 1.1 | 32        |

| #  | Article                                                                                                                                                                                                                                  | IF             | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 37 | Advances in Phos-tag-based methodologies for separation and detection of the phosphoproteome.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 601-608.                                                           | 1.1            | 50        |
| 38 | Expression and phosphorylation state analysis of intracellular protein kinases using Multi-PK antibody and Phos-tag SDS-PAGE. MethodsX, 2015, 2, 469-474.                                                                                | 0.7            | 17        |
| 39 | Neutral Phosphate-Affinity SDS-PAGE System for Profiling of Protein Phosphorylation. Methods in<br>Molecular Biology, 2015, 1295, 323-354.                                                                                               | 0.4            | 10        |
| 40 | Phos-tag-Based Affinity Chromatography Techniques for Enrichment of the Phosphoproteome. , 2015, , 17-30.                                                                                                                                |                | 0         |
| 41 | Identification of two phosphorylated species of β-catenin involved in the ubiquitin-proteasome<br>pathway by using two-dimensional Phos-tag affinity electrophoresis. Journal of Electrophoresis, 2014,<br>58, 1-4.                      | 0.2            | 5         |
| 42 | Simple enrichment of thiol ontaining biomolecules by using zinc(II)–cyclenâ€functionalized magnetic<br>beads. Journal of Separation Science, 2014, 37, 1601-1609.                                                                        | 1.3            | 9         |
| 43 | Profiling of protein thiophosphorylation by Phosâ€ŧag affinity electrophoresis: Evaluation of adenosine 5′â€ <i><scp>O</scp></i> â€{3â€ŧhiotriphosphate) as a phosphoryl donor in protein kinase reaction Proteomics, 2014, 14, 668-679. | ns <b>1.</b> 3 | 26        |
| 44 | Tips on improving the efficiency of electrotransfer of target proteins from Phos-tag SDS-PAGE gel.<br>Proteomics, 2014, 14, 2437-2442.                                                                                                   | 1.3            | 32        |
| 45 | A Phos-Tag-Based Fluorescence Quenching System for Activity Assay and Inhibitor Screening for Alkaline Phosphatase. American Journal of Analytical Chemistry, 2014, 05, 796-804.                                                         | 0.3            | 4         |
| 46 | Phos-tag affinity electrophoresis. Seibutsu Butsuri Kagaku, 2014, 58, 21-23.                                                                                                                                                             | 0.1            | 0         |
| 47 | Sandwich assay for phosphorylation of protein multiplexes by using antibodies and Phos-tag.<br>Analytical Biochemistry, 2013, 438, 104-106.                                                                                              | 1.1            | 21        |
| 48 | A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated<br>biomolecules. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life<br>Sciences, 2013, 925, 86-94.               | 1.2            | 26        |
| 49 | Phos-tag-Based Microarray Techniques Advance Phosphoproteomics. Journal of Proteomics and Bioinformatics, 2013, 01, .                                                                                                                    | 0.4            | 3         |
| 50 | Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced profiling of protein<br>phosphorylation. Seibutsu Butsuri Kagaku, 2012, 56, s41-s44.                                                                                 | 0.1            | 0         |
| 51 | Protocols for the analysis of phosphoproteins using Phos-tag technology. Seibutsu Butsuri Kagaku,<br>2012, 56, s51-s75.                                                                                                                  | 0.1            | 0         |
| 52 | A Laborsaving, Timesaving, and More Reliable Strategy for Separation of Low-Molecular-Mass<br>Phosphoproteins in Phos-tag Affinity Electrophoresis. International Journal of Chemistry, 2012, 4, .                                       | 0.3            | 8         |
| 53 | Phosâ€ŧag SDSâ€₽AGE systems for phosphorylation profiling of proteins with a wide range of molecular masses under neutral pH conditions. Proteomics, 2012, 12, 192-202.                                                                  | 1.3            | 72        |
| 54 | Highly sensitive detection of protein phosphorylation by using improved Phos-tag Biotin. Proteomics, 2012, 12, 932-937.                                                                                                                  | 1.3            | 41        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Separation and identification of four distinct serineâ€phosphorylation states of ovalbumin by<br><scp>P</scp> hosâ€ŧag affinity electrophoresis. Electrophoresis, 2012, 33, 849-855. | 1.3 | 30        |
| 56 | Phos-tag Affinity Electrophoresis for Protein Kinase Profiling. Neuromethods, 2012, , 13-34.                                                                                         | 0.2 | 3         |
| 57 | Phos-tag-based fluorescence resonance energy transfer system for the analysis of protein kinase and phosphatase reactions. Seibutsu Butsuri Kagaku, 2012, 56, s45-s49.               | 0.1 | 0         |
| 58 | Phos-tag chemistry. Seibutsu Butsuri Kagaku, 2012, 56, s3-s7.                                                                                                                        | 0.1 | 0         |
| 59 | A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the kinase reaction of a substrate peptide. Analytical Methods, 2011, 3, 1303.                    | 1.3 | 15        |
| 60 | Improved Phosâ€ŧag SDSâ€PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics, 2011, 11, 319-323.                                              | 1.3 | 163       |
| 61 | Zinc(II)–cyclen polyacrylamide gel electrophoresis for detection of mutations in short Ade/Thy-rich<br>DNA fragments. Analytical Biochemistry, 2011, 408, 348-350.                   | 1.1 | 1         |
| 62 | The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase $11/\hat{l}\mu$ . Biochemical Journal, 2010, 427, 489-497.              | 1.7 | 56        |
| 63 | Genotyping and mapping assay of single-nucleotide polymorphisms in CYP3A5 using DNA-binding zinc(II)<br>complexes. Clinical Biochemistry, 2010, 43, 302-306.                         | 0.8 | 5         |
| 64 | Phosphate-Affinity Gel Electrophoresis Using a Phos-Tag Molecule for Phosphoproteome Study.<br>Current Proteomics, 2009, 6, 104-121.                                                 | 0.1 | 17        |
| 65 | Two-dimensional phosphate-affinity gel electrophoresis for the analysis of phosphoprotein isotypes.<br>Electrophoresis, 2009, 30, 550-559.                                           | 1.3 | 48        |
| 66 | Mobility shift detection of phosphorylation on large proteins using a Phosâ€ŧag SDSâ€₽AGE gel<br>strengthened with agarose. Proteomics, 2009, 9, 4098-4101.                          | 1.3 | 46        |
| 67 | Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nature Protocols, 2009, 4, 1513-1521.                                                                     | 5.5 | 347       |
| 68 | A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptides. Analytical Biochemistry, 2009, 388, 235-241.            | 1.1 | 18        |
| 69 | Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell<br>lysates. Analytical Biochemistry, 2009, 389, 83-85.                               | 1.1 | 35        |
| 70 | Zn(II)–Cyclen Polyacrylamide Gel Electrophoresis for SNP Detection. Methods in Molecular Biology,<br>2009, 578, 169-182.                                                             | 0.4 | 3         |
| 71 | Phosphate-Affinity Polyacrylamide Gel Electrophoresis for SNP Genotyping. Methods in Molecular<br>Biology, 2009, 578, 183-192.                                                       | 0.4 | 3         |
| 72 | Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphateâ€affinity SDSâ€PAGE. Proteomics, 2008, 8, 2994-3003.                                | 1.3 | 81        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A mobility shift detection method for DNA methylation analysis using phosphate affinity polyacrylamide gel electrophoresis. Analytical Biochemistry, 2008, 378, 102-104.                                              | 1.1 | 7         |
| 74 | Detection of the Gua/Cyt-to-Cyt/Gua mutation in a Gua/Cyt-lined sequence using Zn2+–cyclen polyacrylamide gel electrophoresis. Analytical Biochemistry, 2008, 380, 122-127.                                           | 1.1 | 7         |
| 75 | FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway.<br>Nature Structural and Molecular Biology, 2008, 15, 1138-1146.                                                         | 3.6 | 207       |
| 76 | Label-free Kinase Profiling Using Phosphate Affinity Polyacrylamide Gel Electrophoresis. Molecular<br>and Cellular Proteomics, 2007, 6, 356-366.                                                                      | 2.5 | 126       |
| 77 | Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis. Analytical Biochemistry, 2007, 360, 160-162.                                                            | 1.1 | 50        |
| 78 | A single nucleotide polymorphism genotyping method using phosphate-affinity polyacrylamide gel<br>electrophoresis. Analytical Biochemistry, 2007, 361, 294-298.                                                       | 1.1 | 15        |
| 79 | Non-SCN5A Related Brugada Syndromes: Verification of Normal Splicing and Trafficking of SCN5A Without Exonic Mutations. Annals of Human Genetics, 2007, 71, 8-17.                                                     | 0.3 | 7         |
| 80 | Identification on membrane and characterization of phosphoproteins using an alkoxide-bridged<br>dinuclear metal complex as a phosphate-binding tag molecule. Journal of Biomolecular Techniques,<br>2007, 18, 278-86. | 0.8 | 14        |
| 81 | Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH. Proteomics, 2006, 6, 5088-5095.                                                           | 1.3 | 65        |
| 82 | Phosphate-binding Tag, a New Tool to Visualize Phosphorylated Proteins. Molecular and Cellular<br>Proteomics, 2006, 5, 749-757.                                                                                       | 2.5 | 997       |
| 83 | An Alkoxide-Bridged Dinuclear Zinc(II) Hexaazacryptate: A Novel Phosphate Capture Molecule in<br>Aqueous Solution. Bulletin of the Chemical Society of Japan, 2005, 78, 125-131.                                      | 2.0 | 9         |
| 84 | A heteroduplex-preferential Tm depressor for the specificity-enhanced DNA polymerase chain reactions. Analytical Biochemistry, 2005, 337, 154-160.                                                                    | 1.1 | 14        |
| 85 | Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins.<br>Journal of Separation Science, 2005, 28, 155-162.                                                              | 1.3 | 93        |
| 86 | Reliable and Cost-Effective Screening of Inherited Heterozygosity by Zn2+–Cyclen Polyacrylamide Gel<br>Electrophoresis. Clinical Chemistry, 2005, 51, 2195-2198.                                                      | 1.5 | 11        |
| 87 | Detection and Quantification of On-Chip Phosphorylated Peptides by Surface Plasmon Resonance<br>Imaging Techniques Using a Phosphate Capture Molecule. Analytical Chemistry, 2005, 77, 3979-3985.                     | 3.2 | 126       |
| 88 | Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(ii) complex. Dalton<br>Transactions, 2004, , 1189.                                                                                   | 1.6 | 193       |
| 89 | A novel procedure for simple and efficient genotyping of single nucleotide polymorphisms by using the Zn2+-cyclen complex. Nucleic Acids Research, 2002, 30, 126e-126.                                                | 6.5 | 19        |
| 90 | The Ultrastructure of Contractile Tubules in the Heliozoon Actinophrys sol and Their Possible<br>Involvement in Rapid Axopodial Contraction. Journal of Eukaryotic Microbiology, 2001, 48, 519-526.                   | 0.8 | 9         |

| #  | Article                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | On site of action of grayanotoxin in domain 4 segment 6 of rat skeletal muscle sodium channel. FEBS<br>Letters, 2000, 465, 18-22.                          | 1.3 | 28        |
| 92 | Activation of MAP kinase cascade induced by human pancreatic phospholipase A2in a human pancreatic cancer cell line. FEBS Letters, 1997, 407, 343-346.     | 1.3 | 42        |
| 93 | Ultrastructure and Rapid Axopodial Contraction of a Heliozoa, Raphidiophrys contractilis Sp. Nov<br>Journal of Eukaryotic Microbiology, 1995, 42, 283-288. | 0.8 | 17        |
| 94 | Detection of phosphorylation on large proteins by western blotting using Phos-tag containing gel.<br>Protocol Exchange, 0, , .                             | 0.3 | 4         |