Katsumi Kishino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5644610/publications.pdf

Version: 2024-02-01

		159585	133252
153	4,228	30	59
papers	citations	h-index	g-index
155	155	155	2111
155	155	155	2111
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Applied Physics Letters, 2010, 96, .	3.3	359
2	InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate. Japanese Journal of Applied Physics, 2004, 43, L1524-L1526.	1.5	351
3	Growth of Self-Organized GaN Nanostructures on \$f Al_{2}O_{3}(0001)\$ by RF-Radical Source Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1997, 36, L459-L462.	1.5	341
4	Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. Journal of Crystal Growth, 2009, 311, 2063-2068.	1.5	254
5	Ti-mask Selective-Area Growth of GaN by RF-Plasma-Assisted Molecular-Beam Epitaxy for Fabricating Regularly Arranged InGaN/GaN Nanocolumns. Applied Physics Express, 0, 1, 124002.	2.4	179
6	Intersubband transition in (GaN)m/(AlN)n superlattices in the wavelength range from 1.08 to 1.61 1 /4m. Applied Physics Letters, 2002, 81, 1234-1236.	3.3	167
7	Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns. Nanotechnology, 2015, 26, 225602.	2.6	130
8	Monolithic Integration of InGaN-Based Nanocolumn Light-Emitting Diodes with Different Emission Colors. Applied Physics Express, 2013, 6, 012101.	2.4	116
9	Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0001) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks. Journal of Crystal Growth, 1998, 189-190, 138-141.	1.5	96
	beam epitary for fabricating out quantam distist journal of erystal or oward, 1976, 197 190, 190 2 12.		
10	InGaN/GaN nanocolumn LEDs emitting from blue to red., 2007,,.		94
10		2.5	94
	InGaN/GaN nanocolumn LEDs emitting from blue to red., 2007,,. Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well. Journal of Applied	2.5	
11	InGaN/GaN nanocolumn LEDs emitting from blue to red., 2007,,. Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well. Journal of Applied Physics, 2010, 107,. Origin of high oscillator strength in green-emitting InGaNâ^•GaN nanocolumns. Applied Physics Letters,		93
11 12	InGaN/GaN nanocolumn LEDs emitting from blue to red., 2007,,. Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well. Journal of Applied Physics, 2010, 107,. Origin of high oscillator strength in green-emitting InGaN∕GaN nanocolumns. Applied Physics Letters, 2006, 89, 163124. Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55â€,μm in GaN/AlN multiple-quantum	3.3	93
11 12 13	InGaN/GaN nanocolumn LEDs emitting from blue to red., 2007, , . Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well. Journal of Applied Physics, 2010, 107, . Origin of high oscillator strength in green-emitting InGaN∕GaN nanocolumns. Applied Physics Letters, 2006, 89, 163124. Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55â€,ι/₄m in GaN/AlN multiple-quantum wells. Applied Physics Letters, 2004, 84, 1102-1104. Optical properties of InGaN/GaN nanopillars fabricated by postgrowth chemically assisted ion beam	3.3	93 92 91
11 12 13	InGaN/GaN nanocolumn LEDs emitting from blue to red., 2007,,. Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well. Journal of Applied Physics, 2010, 107,. Origin of high oscillator strength in green-emitting InGaNâˆ-GaN nanocolumns. Applied Physics Letters, 2006, 89, 163124. Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55â€,νm in GaN/AlN multiple-quantum wells. Applied Physics Letters, 2004, 84, 1102-1104. Optical properties of InGaN/GaN nanopillars fabricated by postgrowth chemically assisted ion beam etching. Journal of Applied Physics, 2010, 107, . Enhanced carrier confinement effect by the multiquantum barrier in 660 nm GalnP/AllnP visible lasers.	3.3 3.3 2.5	93 92 91 88
11 12 13 14	InGaN/GaN nanocolumn LEDs emitting from blue to red., 2007, , . Strain relaxation effect by nanotexturing InGaN/GaN multiple quantum well. Journal of Applied Physics, 2010, 107, . Origin of high oscillator strength in green-emitting InGaNâ·GaN nanocolumns. Applied Physics Letters, 2006, 89, 163124. Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55â€,ι/4m in GaN/AlN multiple-quantum wells. Applied Physics Letters, 2004, 84, 1102-1104. Optical properties of InGaN/GaN nanopillars fabricated by postgrowth chemically assisted ion beam etching. Journal of Applied Physics, 2010, 107, . Enhanced carrier confinement effect by the multiquantum barrier in 660 nm GalnP/AllnP visible lasers. Applied Physics Letters, 1991, 58, 1822-1824. Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by	3.3 3.3 2.5	93 92 91 88 80

#	Article	IF	CITATIONS
19	Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Applied Physics Express, 2020, 13, 014003.	2.4	59
20	Stimulated emission from GaN nanocolumns. Physica Status Solidi (B): Basic Research, 2004, 241, 2754-2758.	1.5	52
21	Lattice parameters, deviations from Vegard's rule, and E2 phonons in InAlN. Applied Physics Letters, 2008, 93, .	3.3	44
22	Optically Pumped Green (530–560 nm) Stimulated Emissions from InGaN/GaN Multiple-Quantum-Well Triangular-Lattice Nanocolumn Arrays. Applied Physics Express, 2011, 4, 055001.	2.4	42
23	Refractive indices measurement of (GaInP)m/(AlInP)nquasiâ€quaternaries and GaInP/AlInP multiple quantum wells. Journal of Applied Physics, 1994, 76, 1809-1818.	2.5	40
24	Ultraviolet GaNâ€based nanocolumn lightâ€emitting diodes grown on nâ€(111) Si substrates by rfâ€plasmaâ€assisted molecular beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1067-1069.	1.8	40
25	Dislocation reduction via selective-area growth of InN accompanied by lateral growth by rf-plasma-assisted molecular-beam epitaxy. Applied Physics Letters, 2010, 97, .	3.3	40
26	GaN/AlGaN Nanocolumn Ultraviolet Light-Emitting Diode Using Double-Layer Graphene as Substrate and Transparent Electrode. Nano Letters, 2019, 19, 1649-1658.	9.1	39
27	Positive binding energy of a biexciton confined in a localization center formed in a single <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mtext>In</mml:mtext></mml:mrow><mml:mi>x disk, Physical Review B, 2009, 79.</mml:mi></mml:mrow></mml:mrow></mml:math>	/mml:mi><	c/mml:msub
28	Selective-Area Growth of GaN Nanocolumns on Si(111) Substrates Using Nitrided Al Nanopatterns by RF-Plasma-Assisted Molecular-Beam Epitaxy. Applied Physics Express, 2008, 1, 015006.	2.4	37
29	Directional radiation beam from yellow-emitting InGaN-based nanocolumn LEDs with ordered bottom-up nanocolumn array. Applied Physics Express, 2014, 7, 112102.	2.4	37
30	Green-Light Nanocolumn Light Emitting Diodes With Triangular-Lattice Uniform Arrays of InGaN-Based Nanocolumns. IEEE Journal of Quantum Electronics, 2014, 50, 538-547.	1.9	37
31	Yellow-green ZnCdSe/BeZnTe II-VI laser diodes grown on InP substrates. Applied Physics Letters, 2002, 81, 972-974.	3.3	36
32	Molecular beam epitaxial growth of MgZnCdSe on (100) InP substrates. Journal of Electronic Materials, 1996, 25, 425-430.	2.2	35
33	Selective growth of GaN nanocolumns by Al thin layer on substrate. Physica Status Solidi (B): Basic Research, 2007, 244, 1815-1819.	1.5	29
34	High structural quality InNâ^•In0.75Ga0.25N multiple quantum wells grown by molecular beam epitaxy. Applied Physics Letters, 2006, 89, 041907.	3.3	26
35	600â€nm wavelength range GalnP/AllnP quasiâ€quaternary compounds and lasers prepared by gasâ€source molecularâ€beam epitaxy. Journal of Applied Physics, 1993, 74, 819-824.	2.5	25
36	633 nm Red Emissions from InGaN Nanocolumn Light-Emitting Diode by Radio Frequency Plasma Assisted Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2013, 52, 08JE18.	1.5	25

3

#	Article	IF	CITATIONS
37	Novel selective area growth (SAG) method for regularly arranged AlGaN nanocolumns using nanotemplates. Journal of Crystal Growth, 2015, 425, 316-321.	1.5	25
38	Visible Light Emitting Diode with ZnCdSe/BeZnTe Superlattices as an Active Layer and MgSe/BeZnTe Superlattices as a p-Cladding Layer. Physica Status Solidi (B): Basic Research, 2002, 229, 1001-1004.	1.5	24
39	Selective area growth of InGaN-based nanocolumn LED crystals on AlN/Si substrates useful for integrated $\hat{1}\frac{1}{4}$ -LED fabrication. Applied Physics Letters, 2018, 112, .	3.3	23
40	Highâ€opticalâ€quality GaInP and GaInP/AlInP double heterostructure lasers grown on GaAs substrates by gasâ€source molecularâ€beam epitaxy. Journal of Applied Physics, 1989, 66, 4557-4559.	2.5	22
41	Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO ₂ covered with a thin AIN buffer layer. Nanotechnology, 2016, 27, 055302.	2.6	22
42	Remarkable reduction of threshold current density by substrate misorientation effects in 660 nm visible light lasers with GalnP bulk active layers. Applied Physics Letters, 1992, 60, 1046-1048.	3.3	21
43	AlGaN Resonant Tunneling Diodes Grown by rf-MBE. Physica Status Solidi A, 2001, 188, 187-190.	1.7	21
44	Vertical GaN nanocolumns grown on graphene intermediated with a thin AlN buffer layer. Nanotechnology, 2019, 30, 015604.	2.6	21
45	Photopumped green lasing on BeZnSeTe double heterostructures grown on InP substrates. Applied Physics Letters, 2009, 94, 021104.	3.3	19
46	GaN nanocolumn arrays with diameter <30Ânm prepared by twoâ€step selective area growth. Electronics Letters, 2015, 51, 2125-2126.	1.0	19
47	Growth study of self-assembled GaN nanocolumns on silica glass by plasma assisted molecular beam epitaxy. Journal of Crystal Growth, 2017, 480, 67-73.	1.5	19
48	Refractive index measurements of MgZnCdSe Il–VI compound semiconductors grown on InP substrates and fabrications of 500–600 nm range MgZnCdSe distributed Bragg reflectors. Journal of Applied Physics, 1997, 81, 7575-7579.	2.5	18
49	Formation of InGaN quantum dots in regularly arranged GaN nanocolumns grown by rfâ€plasmaâ€assisted molecularâ€beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2374-2377.	0.8	18
50	Carrier-density dependence of photoluminescence from localized states in InGaN/GaN quantum wells in nanocolumns and a thin film. Journal of Applied Physics, 2015, 118, .	2.5	17
51	Lasing Actions in GaN Tiny Hexagonal Nanoring Resonators. IEEE Photonics Journal, 2010, 2, 1027-1033.	2.0	16
52	Photoluminescence Behaviors of Orange-Light-Emitting InGaN-Based Nanocolumns Exhibiting High Internal Quantum Efficiency (17–22%). Japanese Journal of Applied Physics, 2013, 52, 08JD09.	1.5	16
53	Influence of GaN column diameter on structural properties for InGaN nanocolumns grown on top of GaN nanocolumns. AIP Advances, 2016, 6, .	1.3	16
54	ZnCdTe/ZnTe Light Emitting Diodes with CdSe n-Type Contact Layers Grown on ZnTe Substrates by Molecular Beam Epitaxy. Physica Status Solidi (B): Basic Research, 2002, 229, 991-994.	1.5	15

#	Article	IF	Citations
55	High-speed GaN growth and compositional control of GaN-AlGaN superlattice quasi-ternary compounds by RF-radical source molecular beam epitaxy. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4, 550-556.	2.9	14
56	Resonant-Cavity-Enhanced UV Metal-Semiconductor-Metal (MSM) Photodetectors Based on AlGaN System. Physica Status Solidi A, 2001, 188, 321-324.	1.7	14
57	Characterization of ZnCdSeTe/MgZnSeTe materials for ZnTe-based visible optical devices. Physica Status Solidi (B): Basic Research, 2004, 241, 483-486.	1.5	14
58	Long life operations over 5000 hours of BeZnSeTe/MgZnCdSe visible light emitting diodes on InP substrates. Physica Status Solidi (B): Basic Research, 2006, 243, 924-928.	1.5	14
59	Fabrication and lasing characteristics of 0.67 µm GalnAsP/AlGaAs visible lasers prepared by liquid phase epitaxy on. IEEE Journal of Quantum Electronics, 1987, 23, 180-187.	1.9	13
60	Well-arranged novel InGaN hexagonal nanoplates at the tops of nitrogen-polarity GaN nanocolumn arrays. AIP Advances, $2012, 2, .$	1.3	13
61	Proposal of a novel BeZnSeTe quaternary for II-VI middle range visible light emitting devices on InP substrates. Physica Status Solidi (B): Basic Research, 2004, 241, 747-750.	1.5	11
62	Self-Organized Eu-Doped GaN Nanocolumn Light-Emitting Diode Grown by RF-Molecular-Beam Epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2018, 216, 1800501.	1.8	11
63	Raman Scattering in GaN Nanocolumns and GaN/AlN Multiple Quantum Disk Nanocolumns. E-Journal of Surface Science and Nanotechnology, 2006, 4, 227-232.	0.4	11
64	Improved Responsivity of AlGaN-Based Resonant Cavity-Enhanced UV Photodetectors Grown on Sapphire by RF-MBE. Physica Status Solidi A, 2002, 192, 292-295.	1.7	10
65	Lowâ€temperature photoluminescence studies of Inâ€rich InAlN nanocolumns. Physica Status Solidi - Rapid Research Letters, 2012, 6, 123-125.	2.4	10
66	Spectrally-broadened multimode lasing based on structurally graded InGaN nanocolumn photonic crystals suitable for reduction of speckle contrast. Applied Physics Letters, 2016, 109, .	3.3	10
67	Novel II-VI Light Emitting Diodes Fabricated on InP Substrates Applying Wide-Gap and Highly p-Dopable BeZnTe for p-Cladding Layers. Physica Status Solidi A, 2000, 180, 37-43.	1.7	9
68	Refractive Index Measurements of BeZnTe and Related Superlattices on InP and Application for Waveguide Analysis of MgZnCdSe/BeZnTe Visible Lasers. Physica Status Solidi (B): Basic Research, 2002, 229, 987-990.	1.5	9
69	Growth and characterization of InGaN double heterostructures for optical devices at 1.5–1.7 mm communication wavelengths. Physica Status Solidi A, 2004, 201, 2850-2854.	1.7	9
70	Yellow-green emitters based on beryllium-chalcogenides on InP substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1477-1486.	0.8	9
71	Complex strain distribution in individual facetted InGaN/GaN nano-columnar heterostructures. Optical Materials Express, 2013, 3, 47.	3.0	9
72	Enhancement of light emission and internal quantum efficiency in orange and red regions for regularly arrayed InGaN/GaN nanocolumns due to surface plasmon coupling. Applied Physics Letters, 2017, 111, .	3.3	9

#	Article	IF	CITATIONS
73	Fabrication and optical properties of regularly arranged GaN-based nanocolumns on Si substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 031207.	1.2	9
74	Column diameter dependence of the strain relaxation effect in GaN/AlGaN quantum wells on GaN nanocolumn arrays. Applied Physics Express, 2019, 12, 125001.	2.4	9
75	Epitaxial lateral overgrowth of InN by rf-plasma-assisted molecular-beam epitaxy. AIP Advances, 2011, 1, 042145.	1.3	8
76	Photoluminescence properties of selectively grown InN microcrystals. Physica Status Solidi - Rapid Research Letters, 2012, 6, 157-159.	2.4	8
77	Confinement of Optical Phonons Observed by Raman Scattering in GaN/AlN Multiple Quantum Disk Nanocolumns. Journal of the Physical Society of Japan, 2013, 82, 014604.	1.6	8
78	Surface Phonons Studied by Raman Scattering in GaN Nanostructures. Journal of the Physical Society of Japan, 2017, 86, 074602.	1.6	8
79	The influence of AlN buffer layer on the growth of self-assembled GaN nanocolumns on graphene. Scientific Reports, 2020, 10, 853.	3.3	8
80	Self-organization mechanism of GalnP quantum wires in (GaP) m /(lnP) m short-period binary superlattices for GalnP/AllnP multi-quantum-wire (MQWR) lasers. Optical and Quantum Electronics, 1996, 28, 547-556.	3.3	7
81	Intersubband Absorption at?? 1.2-1.6?m in GaN/AlN Multiple Quantum Wells Grown by rf-Plasma Molecular Beam Epitaxy. Physica Status Solidi A, 2002, 192, 124-128.	1.7	7
82	Aging characteristics of Il–VI yellow light emitting diodes with beryllium chalcogenide (BeZnSeTe) active layers on InP substrates. Physica Status Solidi A, 2004, 201, 2708-2711.	1.7	7
83	Room temperature operation of 1.55.MU.m wavelength-range GaN/AlN quantum well intersubband photodetectors. IEICE Electronics Express, 2005, 2, 566-571.	0.8	7
84	Flipâ€chip bonding and fabrication of wellâ€ordered nanocolumn arrays on sputterâ€deposited AlN/Si (111) substrate. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 992-996.	1.8	7
85	Photon correlation study of background suppressed single InGaN nanocolumns. Japanese Journal of Applied Physics, 2016, 55, 04EK03.	1.5	7
86	MgZnCdSe/BeZnTe Visible Light-Emitting Diode with Longer Device Lifetime over 1000 h. Physica Status Solidi A, 2002, 192, 201-205.	1.7	6
87	Development of yellow-green LEDs and LDs using MgZnCdSe-BeZnTe superlattices on InP substrates by MBE. Physica Status Solidi (B): Basic Research, 2004, 241, 739-746.	1.5	6
88	Growth of high-In-content InGaN multiple quantum disk nanocolumns on Si(111) by RF plasma-assisted molecular-beam epitaxy. Physica Status Solidi (B): Basic Research, 2006, 243, 1481-1485.	1.5	6
89	Effect of Be-doping on InGaN/GaN nanocolumn light-emitting diode structures by rf-plasma-assisted molecular-beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3069-3072.	0.8	6
90	Whispering gallery mode in periodic InGaNâ€based hexagonal nanoring arrays grown by rfâ€MBE using Tiâ€mask selectiveâ€area growth. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 37-40.	1.8	6

#	Article	IF	Citations
91	Thermally Engineered Flip-Chip InGaN/GaN Well-Ordered Nanocolumn Array LEDs. IEEE Photonics Technology Letters, 2015, 27, 2343-2346.	2.5	6
92	Crystal structure and optical properties of a high-density InGaN nanoumbrella array as a white light source without phosphors. NPG Asia Materials, 2016, 8, e289-e289.	7.9	6
93	Stableâ€wavelength operation of europiumâ€doped GaN nanocolumn lightâ€emitting diodes grown by rfâ€plasmaâ€assisted molecular beam epitaxy. Electronics Letters, 2017, 53, 666-668.	1.0	6
94	Redâ€Emitting InGaNâ€Based Nanocolumn Lightâ€Emitting Diodes with Highly Directional Beam Profiles. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900771.	1.8	6
95	Graphene-Based Transparent Conducting Substrates for GaN/AlGaN Nanocolumn Flip-Chip Ultraviolet Light-Emitting Diodes. ACS Applied Nano Materials, 2021, 4, 9653-9664.	5.0	6
96	Monolithically integrated green-to-orange color InGaN-based nanocolumn photonic crystal LEDs with directional radiation beam profiles. Applied Physics Express, 2022, 15, 022013.	2.4	6
97	Reduction of Defect Density of ZnCdSe on InP Substrates by Introducing BeZnTe Buffer Layers. Physica Status Solidi (B): Basic Research, 2002, 229, 107-110.	1.5	5
98	Yellow–green lasing operations of ZnCdTe/MgZnSeTe laser diodes on ZnTe substrates. Physica Status Solidi (B): Basic Research, 2006, 243, 955-958.	1.5	5
99	Investigation of p-side contact layers for Il–VI compound semiconductor optical devices fabricated on InP substrates by MBE. Journal of Crystal Growth, 2015, 425, 199-202.	1.5	5
100	Energy- and density-dependent dynamics of photoexcited carriers in InN films. Applied Physics Letters, 2009, 95, .	3.3	4
101	Optical properties of InGaN/GaN nanocolumns in yellowâ€toâ€red region. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2477-2480.	0.8	4
102	Optical properties of arrays of hexagonal GaN microdisks acting as whisperingâ€galleryâ€modeâ€type optical microcavities. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1017-1020.	1.8	4
103	Spatial emission distribution and carrier recombination dynamics in regularly arrayed InGaN/GaN quantum structure nanocolumns. Japanese Journal of Applied Physics, 2016, 55, 105001.	1.5	4
104	Effect of structural properties on optical characteristics of InGaN/GaN nanocolumns fabricated by selective-area growth. Applied Physics Express, 2017, 10, 045001.	2.4	4
105	Photonic band characterization in InGaN/GaN nanocolumn arrays with triangular and honeycomb lattices by angle-resolved micro-photoluminescence measurements. Japanese Journal of Applied Physics, 2021, 60, 060904.	1.5	4
106	Energy diagram and parameters regarding localized states in InGaN/GaN nanocolumns. Journal of Applied Physics, 2021, 130, .	2.5	4
107	Self-Organized GaN/AlN Superlattice Nanocolumn Crystals Grown by RF-MBE. Materials Research Society Symposia Proceedings, 2004, 831, 666.	0.1	3
108	High p-type doping level of MgZnCdSe on InP substrates by inserting ZnTe thin layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 857-860.	0.8	3

7

#	Article	IF	CITATIONS
109	Selective growth of GaN nanocolumns on predeposited Al patterns by rf-plasma-assisted molecular-beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1879-1882.	0.8	3
110	Tiâ€mask selectiveâ€area growth of GaN nanorings by RFâ€plasmaâ€assisted molecularâ€beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S607.	0.8	3
111	Investigation of yellow/green II-VI compound semiconductor laser diode structures on InP substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 669-672.	0.8	3
112	Carrier density dependence of localized carrier recombination dynamics in orange-emitting InGaN/GaN nanocolumns. Journal of Applied Physics, 2020, 128, 133102.	2.5	3
113	Breakdown of the Selection Rule of Raman Spectra in a Single GaN Nanocolumn. E-Journal of Surface Science and Nanotechnology, 2012, 10, 321-324.	0.4	3
114	Room temperature CW operation of GalnP/AlGalnP multiple quantum wire visible lasers (MQWR-LD)., 0,		2
115	Suppression of Inversion Domains and Decrease of Threading Dislocations in Migration Enhanced Epitaxial GaN by RF-Molecular Beam Epitaxy. Physica Status Solidi A, 2000, 180, 65-71.	1.7	2
116	Room temperature negative differential resistance in AlN/GaN double barrier resonant tunneling diodes grown by RF-plasma assisted molecular beam epitaxy. , 0, , .		2
117	Fundamental optical properties of InN grown by epitaxial lateral overgrowth method., 2013,,.		2
118	Twoâ€photon absorption induced antiâ€Stokes emission in single InGaN/GAN quantumâ€dotâ€like objects. Physica Status Solidi - Rapid Research Letters, 2013, 7, 344-347.	2.4	2
119	Investigation of p-contact layers for BeZnSeTe/MgZnCdSe optical devices on InP substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1273-1277.	0.8	2
120	Periodic Radiation Patterns and Circulating Direction of Lasing Light by Quasi Whispering Gallery Mode in Hexagonal GaN Microdisk. Journal of the Physical Society of Japan, 2016, 85, 053401.	1.6	2
121	Independent drive of integrated multicolor (RGBY) micro-LED array using regularly arrayed InGaN based nanocolumns. , 2017, , .		2
122	Substrate Misorientation, Multiâ€Quantumâ€Barrier, and Thermal Annealing Effects in MgZnSSe and ZnCdSe Compounds and Blueâ€Green IIâ€VI Light Emitting Devices. Physica Status Solidi (B): Basic Research, 1995, 187, 327-335.	1.5	1
123	All-optical modulation using intersubband transitions at 1.55 \hat{l} 4m in GaN/AlN multiple quantum well. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2748-2752.	0.8	1
124	Highly efficient blue to red emissions of InGaN/GaN nano-disks integrated into GaN nanocolumns. , 2005, , .		1
125	Lasing operation of ZnTe based yellow-green laser diodes. , 2005, , .		1
126	Proposal of BeZnSeTe/MgZnCdSe II–VI compound semiconductors on InP substrates for green laser diodes., 2008,,.		1

#	Article	IF	CITATIONS
127	Exciton and biexciton properties in GaN nanocolumn: dependence on morphology and diameter. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 141-143.	0.8	1
128	Raman Scattering from a Surface Phonon in GaN Nanowalls and Regularly-Arrayed GaN Nanocolumns. , 2011, , .		1
129	Raman scattering from surface phonons in GaN nanostructures. , 2013, , .		1
130	Wideâ€range visible luminescence of ZnCdSe/BeZnTe typeâ€N superlattices grown on InP substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1213-1217.	0.8	1
131	Switching of whispering gallery mode in hexagonal GaN microdisk by change in condition of reflection surface. Electronics Letters, 2015, 51, 170-172.	1.0	1
132	Effects of Introduction of InGaN Quantum Structures on Structural and Optical Properties of InGaN Nanocolumns. Physica Status Solidi (B): Basic Research, 2018, 255, 1700481.	1.5	1
133	Comparison of surface plasmon polariton characteristics of Ag- and Au-based InGaN/GaN nanocolumn plasmonic crystals. Applied Physics Express, 2021, 14, 105002.	2.4	1
134	ZnCdTe/ZnTe Light Emitting Diodes with CdSe n-Type Contact Layers Grown on ZnTe Substrates by Molecular Beam Epitaxy. Physica Status Solidi (B): Basic Research, 2002, 229, 991-994.	1.5	1
135	AlGaN Resonant Tunneling Diodes Grown by rf-MBE. Physica Status Solidi A, 2001, 188, 187-190.	1.7	1
136	Substrate Misorientation Effect On Cubic And Hexagonal GaN Grown On GaAs By Molecular Beam Epitaxy Using RF-radical Nitrogen Source., 0,,.		0
137	Molecular beam epitaxial growth of MgZnCdSe on (100) InP substrates. , 0, , .		0
138	Effect of (GaP)/sub m//(InP)/sub m/ short period binary superlattice period on quantum wire formation by strain induced lateral layer ordering in GaInP/AllnP multi-quantum-wire lasers. , 0, , .		0
139	Step Flow Surface Morphology in Plasma Assisted Molecular Beam Epitaxy Grown GaN. Materials Research Society Symposia Proceedings, 2000, 639, 3331.	0.1	0
140	Quasi-free standing GaN epitaxial layer grown on nano-columnar GaN by RF-plasma assisted molecular beam epitaxy. , 0, , .		0
141	Yellow-green lasing emission from ZnCdSe/BeZnTe II-VI laser diodes on InP substrates. , 0, , .		0
142	High-quality InN grown by RF-plasma assisted molecular beam epitaxy as novel materials for optical communication. , 0, , .		0
143	Ultrafast intersubband relaxation at 1.55 \hat{l} 4m in GaN/AlN MQWs. , 0, , .		0
144	Non-Polar GaN/AlN Superlattices on A-plane AlN (500nm) Buffer Layers Grown by RF-MBE. Materials Research Society Symposia Proceedings, 2004, 831, 212.	0.1	0

#	Article	IF	CITATIONS
145	Middle-range visible light emitting devices fabricated using BeZnSeTe/MgZnCdSe II-VI compounds on InP substrates. , 0, , .		0
146	Ultrafast intersubband relaxation dynamics in GaN/AlN multiple quantum wells using two-color pump-probe technique. , 0, , .		0
147	Ultrafast Intersubband Relaxation Dynamics and Coherent Nonlinearity in Bulk and Waveguide structures of GaN/AlN Multiple Quantum Wells. AIP Conference Proceedings, 2007, , .	0.4	0
148	Growth and properties of InAlN nanocolumns emitting in optical communication wavelengths. , 2008, , .		0
149	Formation of indium tin oxide transparent electrodes by magnetron sputtering for II-VI compound semiconductor optical devices on InP substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1278-1281.	0.8	0
150	Application of indium tin oxide to the pâ€cladding layers of yellow/green IIâ€VI compound semiconductor laser diode structures on InP substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 665-668.	0.8	0
151	Raman Scattering in GaN/AlN Multiple Quantum Disk Nanocolumns. AIP Conference Proceedings, 2007, ,	0.4	0
152	Electric Conduction in a Single GaN Nanocolumn. E-Journal of Surface Science and Nanotechnology, 2012, 10, 355-359.	0.4	0
153	Research Trends and Prospects of Blue and Ultraviolet Laser Diodes The Review of Laser Engineering, 1995, 23, 487-496.	0.0	0