
Katherine B Louie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5644219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRAGE-CRISPR facilitates rapid activation of secondary metabolite biosynthetic gene clusters in bacteria. Cell Chemical Biology, 2022, 29, 696-710.e4.	5.2	15
2	Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. New Phytologist, 2022, 233, 1317-1330.	7.3	23
3	Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. ISME Journal, 2022, 16, 1074-1085.	9.8	25
4	Development of platforms for functional characterization and production of phenazines using a multi-chassis approach via CRAGE. Metabolic Engineering, 2022, 69, 188-197.	7.0	4
5	A multi-omic characterization of temperature stress in a halotolerant Scenedesmus strain for algal biotechnology. Communications Biology, 2021, 4, 333.	4.4	22
6	Anaerobic gut fungi are an untapped reservoir of natural products. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
7	Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of Thermoflexus hugenholtzii and Three Candidate Species From China and Japan. Frontiers in Microbiology, 2021, 12, 632731.	3.5	8
8	Mass Spectrometry for Natural Product Discovery. , 2020, , 263-306.		13
9	Taxonomic and Metabolic Incongruence in the Ancient Genus Streptomyces. Frontiers in Microbiology, 2019, 10, 2170.	3.5	40
10	MAGI: A Method for Metabolite Annotation and Gene Integration. ACS Chemical Biology, 2019, 14, 704-714.	3.4	28
11	Regulation of Oxygenic Photosynthesis during Trophic Transitions in the Green Alga <i>Chromochloris zofingiensis</i> . Plant Cell, 2019, 31, 579-601.	6.6	61
12	Cooking shapes the structure and function of the gut microbiome. Nature Microbiology, 2019, 4, 2052-2063.	13.3	112
13	CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nature Microbiology, 2019, 4, 2498-2510.	13.3	85
14	An integrated workflow for phenazine-modifying enzyme characterization. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 567-577.	3.0	6
15	Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018, 3, 470-480.	13.3	1,268
16	Microbial Ecology on Solar Panels in Berkeley, CA, United States. Frontiers in Microbiology, 2018, 9, 3043.	3.5	23
17	Widespread adenine N6-methylation of active genes in fungi. Nature Genetics, 2017, 49, 964-968.	21.4	292
18	Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry. Analytical Chemistry, 2017, 89, 6521-6526.	6.5	18

KATHERINE B LOUIE

#	Article	IF	CITATIONS
19	A robust gene-stacking method utilizing yeast assembly for plant synthetic biology. Nature Communications, 2016, 7, 13215.	12.8	59
20	New insight into the role of MMP14 in metabolic balance. PeerJ, 2016, 4, e2142.	2.0	21
21	Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nature Plants, 2015, 1, 15107.	9.3	89
22	Metabolic Imaging Using Nanostructure-Initiator Mass Spectrometry (NIMS). Methods in Molecular Biology, 2014, 1198, 313-329.	0.9	7
23	Mass spectrometry imaging for in situ kinetic histochemistry. Scientific Reports, 2013, 3, 1656.	3.3	57
24	"Replica-Extraction-Transfer―Nanostructure-Initiator Mass Spectrometry Imaging of Acoustically Printed Bacteria. Analytical Chemistry, 2013, 85, 10856-10862.	6.5	43
25	OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging. Analytical Chemistry, 2013, 85, 10354-10361.	6.5	79
26	Resolving brain regions using nanostructure initiator mass spectrometry imaging of phospholipids. Integrative Biology (United Kingdom), 2012, 4, 693.	1.3	34
27	Acoustic deposition with NIMS as a high-throughput enzyme activity assay. Analytical and Bioanalytical Chemistry, 2012, 403, 707-711.	3.7	33
28	Selfâ€degrading, MRIâ€detectable hydrogel sensors with picomolar target sensitivity. Magnetic Resonance in Medicine, 2010, 64, 1792-1799.	3.0	18