
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5643133/publications.pdf Version: 2024-02-01

LONCOLIAN CHEN

#	Article	IF	CITATIONS
1	Dynamic behaviors of impinging viscoelastic droplets on superhydrophobic surfaces heated above the boiling temperature. International Journal of Heat and Mass Transfer, 2022, 183, 122080.	4.8	8
2	Successive Rebounds of Impinging Water Droplets on Superhydrophobic Surfaces. Langmuir, 2022, 38, 3860-3867.	3.5	17
3	Spectacular Behavior of a Viscoelastic Droplet Impinging on a Superhydrophobic Mesh. Langmuir, 2022, 38, 6106-6115.	3.5	13
4	Liquidâ€Pressureâ€Guided Superhydrophobic Surfaces with Adaptive Adhesion and Stability. Advanced Materials, 2022, 34, .	21.0	20
5	Experimental and numerical investigations on the spreading dynamics of impinging liquid droplets on diverse wettable surfaces. International Journal of Multiphase Flow, 2022, 153, 104135.	3.4	18
6	Penetration and ligament formation of viscoelastic droplets impacting on the superhydrophobic mesh. Scientific Reports, 2022, 12, .	3.3	14
7	<i>Salvinia</i> -like slippery surface with stable and mobile water/air contact line. National Science Review, 2021, 8, nwaa153.	9.5	47
8	Selfâ€Assembly of Colloidal Nanoparticles into Wellâ€Ordered Centimeter‣ong Rods via Crack Engineering. Advanced Materials Interfaces, 2021, 8, 2000222.	3.7	6
9	Effective Strategies for Droplet Transport on Solid Surfaces. Advanced Materials Interfaces, 2021, 8, 2001441.	3.7	19
10	Droplet impact on pillar-arrayed non-wetting surfaces. Soft Matter, 2021, 17, 5932-5940.	2.7	21
11	What Can Probing Liquid–Air Menisci Inside Nanopores Teach Us About Macroscopic Wetting Phenomena?. ACS Applied Materials & Interfaces, 2021, 13, 6897-6905.	8.0	3
12	Charge Density Gradient Propelled Ultrafast Sweeping Removal of Dropwise Condensates. Journal of Physical Chemistry B, 2021, 125, 1936-1943.	2.6	18
13	Polymeric Microparticles Generated via Confinementâ€Free Fluid Instability. Advanced Materials, 2021, 33, e2007154.	21.0	7
14	Elastic film modelling and experimental research of the first-order vibration frequencies of sessile micro-droplets. Fluid Dynamics Research, 2021, 53, 035505.	1.3	0
15	Macrodropâ€Impactâ€Mediated Fluid Microdispensing. Advanced Science, 2021, 8, e2101331.	11.2	26
16	Impact dynamics of Newtonian and viscoelastic droplets on heated surfaces at low Weber number. Case Studies in Thermal Engineering, 2021, 26, 101109.	5.7	12
17	Water sprays formed by impinging millimeter-sized droplets on superhydrophobic meshes. Physics of Fluids, 2021, 33, .	4.0	14
18	Dilute sodium dodecyl sulfate droplets impact on micropillar-arrayed non-wetting surfaces. Physics of Fluids, 2021, 33, .	4.0	10

#	Article	IF	CITATIONS
19	Elasticity-to-Capillarity Transition in Soft Substrate Deformation. Nano Letters, 2021, 21, 10361-10367.	9.1	6
20	Prompting Splash Impact on Superamphiphobic Surfaces by Imposing a Viscous Part. Advanced Science, 2020, 7, 1902687.	11.2	34
21	Surface-Charge-Assisted Microdroplet Generation on a Superhydrophobic Surface. Langmuir, 2020, 36, 14352-14360.	3.5	11
22	Droplets Self-Born in the Dynamic Polymer for Generating Functional Coatings. ACS Applied Materials & Interfaces, 2020, 12, 39657-39664.	8.0	5
23	Design of robust superhydrophobic surfaces. Nature, 2020, 582, 55-59.	27.8	1,124
24	Evaporation and particle deposition of bi-component colloidal droplets on a superhydrophobic surface. International Journal of Heat and Mass Transfer, 2020, 159, 120063.	4.8	18
25	Jetting from an impacting drop containing a particle. Physics of Fluids, 2020, 32, .	4.0	18
26	Identification of surface nanobubbles and resolving their size-dependent stiffness. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	5
27	Oblique droplet impact on superhydrophobic surfaces: Jets and bubbles. Physics of Fluids, 2020, 32, .	4.0	31
28	Promoting rebound of impinging viscoelastic droplets on heated superhydrophobic surfaces. New Journal of Physics, 2020, 22, 123001.	2.9	14
29	10.1063/1.5139534.8., 2020, , .		Ο
30	Microdrop impact on soft substrates at low Weber numbers. Journal of Adhesion Science and Technology, 2019, 33, 2128-2140.	2.6	4
31	Surface charge printing for programmed droplet transport. Nature Materials, 2019, 18, 936-941.	27.5	401
32	Omni‣iquid Droplet Manipulation Platform. Advanced Materials Interfaces, 2019, 6, 1900653.	3.7	33
33	Resolving the Apparent Line Tension of Sessile Droplets and Understanding its Sign Change at a Critical Wetting Angle. Physical Review Letters, 2019, 123, 094501.	7.8	19
34	Sessile Microdrop Coalescence on Partial Wetting Surfaces: Effects of Surface Wettability and Stiffness. Langmuir, 2019, 35, 12955-12961.	3.5	5
35	Superhydrophobic/Superoleophilic: Robust, Easyâ€Cleaning Superhydrophobic/Superoleophilic Copper Meshes for Oil/Water Separation under Harsh Conditions (Adv. Mater. Interfaces 11/2019). Advanced Materials Interfaces, 2019, 6, 1970069.	3.7	15
36	Robust, Easyâ€Cleaning Superhydrophobic/Superoleophilic Copper Meshes for Oil/Water Separation under Harsh Conditions. Advanced Materials Interfaces, 2019, 6, 1900158.	3.7	20

#	Article	IF	CITATIONS
37	An electric-field-dependent drop selector. Lab on A Chip, 2019, 19, 1296-1304.	6.0	6
38	Static and dynamic wetting of soft substrates. Current Opinion in Colloid and Interface Science, 2018, 36, 46-57.	7.4	63
39	Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation. Journal of Colloid and Interface Science, 2018, 516, 86-97.	9.4	190
40	Helical Fibers via Evaporationâ€Driven Selfâ€Assembly of Surfaceâ€Acylated Cellulose Nanowhiskers. Angewandte Chemie, 2018, 130, 16561-16566.	2.0	13
41	Helical Fibers via Evaporationâ€Driven Selfâ€Assembly of Surfaceâ€Acylated Cellulose Nanowhiskers. Angewandte Chemie - International Edition, 2018, 57, 16323-16328.	13.8	17
42	Impact Dynamics of Aqueous Polymer Droplets on Superhydrophobic Surfaces. Macromolecules, 2018, 51, 7817-7827.	4.8	50
43	Spreading of impinging droplets on nanostructured superhydrophobic surfaces. Applied Physics Letters, 2018, 113, .	3.3	26
44	A high-force and high isolation metal-contact RF MEMS switch. Microsystem Technologies, 2017, 23, 4699-4708.	2.0	7
45	Impact of Viscous Droplets on Superamphiphobic Surfaces. Langmuir, 2017, 33, 144-151.	3.5	67
46	Submillimeter-Sized Bubble Entrapment and a High-Speed Jet Emission during Droplet Impact on Solid Surfaces. Langmuir, 2017, 33, 7225-7230.	3.5	49
47	Droplet impact on soft viscoelastic surfaces. Physical Review E, 2016, 94, 063117.	2.1	65
48	Polymeric Flaky Nanostructures from Cellulose Stearoyl Esters for Functional Surfaces. Advanced Materials Interfaces, 2016, 3, 1600636.	3.7	6
49	Collapse of Surface Nanobubbles. Physical Review Letters, 2015, 114, 114505.	7.8	46
50	Moisture-responsive films of cellulose stearoyl esters showing reversible shape transitions. Scientific Reports, 2015, 5, 11011.	3.3	80
51	Comparison of spontaneous wetting and drop impact dynamics of aqueous surfactant solutions on hydrophobic polypropylene surfaces: scaling of the contact radius. Colloid and Polymer Science, 2015, 293, 257-265.	2.1	20
52	Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops. Physical Review E, 2014, 90, 022401.	2.1	84
53	Electrowetting — From statics to dynamics. Advances in Colloid and Interface Science, 2014, 210, 2-12.	14.7	146
54	Transparent Slippery Surfaces Made with Sustainable Porous Cellulose Lauroyl Ester Films. ACS Applied Materials & Interfaces, 2014, 6, 6969-6976.	8.0	64

#	Article	IF	CITATIONS
55	Initial Electrospreading of Aqueous Electrolyte Drops. Physical Review Letters, 2013, 110, 026103.	7.8	26
56	Dynamic Wetting of Hydrophobic Polymers by Aqueous Surfactant and Superspreader Solutions. Langmuir, 2013, 29, 14855-14864.	3.5	45
57	Inertial to Viscoelastic Transition in Early Drop Spreading on Soft Surfaces. Langmuir, 2013, 29, 1893-1898.	3.5	67
58	Superhydrophobic surfaces fabricated from nano- and microstructured cellulose stearoyl esters. Chemical Communications, 2013, 49, 4962.	4.1	51
59	Snap-in dynamics of single particles to water drops. Applied Physics Letters, 2012, 101, .	3.3	30
60	Short time wetting dynamics on soft surfaces. Soft Matter, 2011, 7, 9084.	2.7	65
61	Evolution of entrapped air under bouncing droplets on viscoelastic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 726-732.	4.7	38
62	A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Applied Surface Science, 2011, 257, 8857-8863.	6.1	160
63	Critical droplet volume for spontaneous capillary wrapping. Applied Physics Letters, 2010, 97, 124103.	3.3	10
64	Bouncing droplets on nonsuperhydrophobic surfaces. Physical Review E, 2010, 82, 016308.	2.1	61
65	Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays. Journal of Micromechanics and Microengineering, 2010, 20, 105001.	2.6	27
66	New dimensionless number for superhydrophobicity study of micron/submicron patterned surfaces. , 2010, , .		0
67	Dual-scaled stable superhydrophobic nano-flower surfaces. , 2009, , .		1