
David Jonah Grunwald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5642694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Headwaters of the zebrafish — emergence of a new model vertebrate. Nature Reviews Genetics, 2002, 3, 717-724.	16.3	638
2	Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish Genome. PLoS Genetics, 2012, 8, e1002861.	3.5	422
3	Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish. Developmental Cell, 2019, 51, 645-657.e4.	7.0	188
4	Precise Editing of the Zebrafish Genome Made Simple and Efficient. Developmental Cell, 2016, 36, 654-667.	7.0	183
5	Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12485-12490.	7.1	166
6	An interacting network of T-box genes directs gene expression and fate in the zebrafish mesoderm. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9410-9415.	7.1	74
7	Clonal origins of cells in the pigmented retina of the zebrafish eye. Developmental Biology, 1989, 131, 60-69.	2.0	66
8	Chromatin architecture transitions from zebrafish sperm through early embryogenesis. Genome Research, 2021, 31, 981-994.	5.5	48
9	alyron, an Insertional Mutation Affecting Early Neural Crest Development in Zebrafish. Developmental Biology, 1999, 210, 322-338.	2.0	27
10	Intracellular Calcium Mobilization Is Required for Sonic Hedgehog Signaling. Developmental Cell, 2018, 45, 512-525.e5.	7.0	24
11	A hyperactivating proinflammatory RIPK2 allele associated with early-onset osteoarthritis. Human Molecular Genetics, 2018, 27, 2383-2391.	2.9	23
12	SHIP2, a factor associated with diet-induced obesity and insulin sensitivity, attenuates FGF signaling in vivo. DMM Disease Models and Mechanisms, 2010, 3, 733-742.	2.4	21
13	Nadine DobrovolskaÃ ⁻ a-ZavadskaÃ ⁻ a and the dawn of developmental genetics. BioEssays, 2001, 23, 365-371.	2.5	20
14	The Paf1 Complex and P-TEFb have reciprocal and antagonist roles in maintaining multipotent neural crest progenitors. Development (Cambridge), 2019, 146, .	2.5	11
15	Interactions among Ryanodine Receptor isotypes contribute to muscle fiber type development and function. DMM Disease Models and Mechanisms, 2019, 13, .	2.4	8
16	A revolution coming to a classic model organism. Nature Methods, 2013, 10, 303-306.	19.0	3