
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/564142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metabolism, 2005, 1, 323-330.	16.2	501
2	Leptin Impairs Metabolic Actions of Insulin in Isolated Rat Adipocytes. Journal of Biological Chemistry, 1997, 272, 10585-10593.	3.4	380
3	Dual Lipolytic Control of Body Fat Storage and Mobilization in Drosophila. PLoS Biology, 2007, 5, e137.	5.6	275
4	Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cellular Signalling, 2011, 23, 1207-1223.	3.6	141
5	Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2012, 5, 247.	2.4	138
6	In Vitro Metabolic and Mitogenic Signaling of Insulin Glargine and Its Metabolites. PLoS ONE, 2010, 5, e9540.	2.5	132
7	The Sulfonylurea Drug, Glimepiride, Stimulates Glucose Transport, Glucose Transporter Translocation, and Dephosphorylation in Insulin-Resistant Rat Adipocytes In Vitro. Diabetes, 1993, 42, 1852-1867.	0.6	107
8	Extrapancreatic effects of sulfonylureas — a comparison between glimepiride and conventional sulfonylureas. Diabetes Research and Clinical Practice, 1995, 28, S115-S137.	2.8	104
9	Hepatic leptin signaling in obesity. FASEB Journal, 2005, 19, 1048-1050.	0.5	95
10	Structureâ^'Activity Relationship of Synthetic Phosphoinositolglycans Mimicking Metabolic Insulin Action. Biochemistry, 1998, 37, 13421-13436.	2.5	90
11	The Molecular Mechanism of the Insulin-mimetic/sensitizing Activity of the Antidiabetic Sulfonylurea Drug Amaryl. Molecular Medicine, 2000, 6, 907-933.	4.4	83
12	Differential interaction of glimepiride and glibenclamide with the β-cell sulfonylurea receptor I. Binding characteristics. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1191, 267-277.	2.6	75
13	6,8-Difluoro-4-methylumbiliferyl phosphate: a fluorogenic substrate for protein tyrosine phosphatases. Analytical Biochemistry, 2005, 338, 32-38.	2.4	69
14	Induced release of membrane vesicles from rat adipocytes containing glycosylphosphatidylinositol-anchored microdomain and lipid droplet signalling proteins. Cellular Signalling, 2009, 21, 324-338.	3.6	68
15	Short-Term Leptin-Dependent Inhibition of Hepatic Gluconeogenesis Is Mediated by Insulin Receptor Substrate-2. Molecular Endocrinology, 2002, 16, 1612-1628.	3.7	66
16	Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulphonylureas, glimepiride and glibenclamide, is correlated with modulations of the cAMP regulatory cascade. Biochemical Pharmacology, 1994, 48, 985-996.	4.4	60
17	Cholesterol Depletion Blocks Redistribution of Lipid Raft Components and Insulin-Mimetic Signaling by Glimepiride and Phosphoinositolglycans in Rat Adipocytes. Molecular Medicine, 2002, 8, 120-136.	4.4	59
18	Differential interaction of glimepiride and glibenclamide with the β-cell sulfonylurea receptor II. Photoaffinity labeling of a 65 kDa protein by [3H]glimepiride. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1191, 278-290.	2.6	58

#	Article	IF	CITATIONS
19	Regulation of lipid raft proteins by glimepiride- and insulin-induced glycosylphosphatidylinositol-specific phospholipase C in rat adipocytes. Biochemical Pharmacology, 2005, 69, 761-780.	4.4	56
20	Convergence and Divergence of the Signaling Pathways for Insulin and Phosphoinositolglycans. Molecular Medicine, 1998, 4, 299-323.	4.4	51
21	Inhibition of Lipolysis by Palmitate, H2O2 and the Sulfonylurea Drug, Glimepiride, in Rat Adipocytes Depends on cAMP Degradation by Lipid Droplets. Biochemistry, 2008, 47, 1259-1273.	2.5	49
22	Signalling pathways of an insulin-mimetic phosphoinositolglycan–peptide in muscle and adipose tissue. Biochemical Journal, 1998, 330, 277-286.	3.7	47
23	Protein phosphorylation in yeast mitochondria: cAMP-Dependence, submitochondrial localization and substrates of mitochondrial protein kinases. Yeast, 1987, 3, 161-174.	1.7	46
24	Cyclipostins, Novel Hormone-sensitive Lipase Inhibitors from Streptomyces sp. DSM 13381. II. Isolation, Structure Elucidation and Biological Properties Journal of Antibiotics, 2002, 55, 480-494.	2.0	45
25	Use of an Inhibitor To Identify Members of the Hormone-Sensitive Lipase Family. Biochemistry, 2006, 45, 14183-14191.	2.5	45
26	Might the Kinetic Behavior of Hormone-Sensitive Lipase Reflect the Absence of the Lid Domain?. Biochemistry, 2004, 43, 9298-9306.	2.5	42
27	Translocation of Glycosylphosphatidylinositol-Anchored Proteins from Plasma Membrane Microdomains to Lipid Droplets in Rat Adipocytes Is Induced by Palmitate, H ₂ O ₂ , and the Sulfonylurea Drug Glimepiride. Molecular Pharmacology, 2008. 73. 1513-1529.	2.3	42
28	CB1 receptor antagonist AVE1625 affects primarily metabolic parameters independently of reduced food intake in Wistar rats. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E826-E832.	3.5	41
29	Insulin-Mimetic Signaling by the Sulfonylurea Glimepiride and Phosphoinositolglycans Involves Distinct Mechanisms for Redistribution of Lipid Raft Components. Biochemistry, 2001, 40, 14603-14620.	2.5	39
30	Coordinated regulation of esterification and lipolysis by palmitate, H2O2 and the anti-diabetic sulfonylurea drug, glimepiride, in rat adipocytes. European Journal of Pharmacology, 2008, 597, 6-18.	3.5	38
31	The molecular interaction of sulfonylureas with β-cell ATP-sensitive K+-channels. Diabetes Research and Clinical Practice, 1995, 28, S67-S80.	2.8	37
32	Insulin-mimetic signalling of synthetic phosphoinositolglycans in isolated rat adipocytes. Biochemical Journal, 1998, 336, 163-181.	3.7	37
33	Dynamics of plasma membrane microdomains and cross-talk to the insulin signalling cascade. FEBS Letters, 2002, 531, 81-87.	2.8	35
34	Upregulation of Lipid Synthesis in Small Rat Adipocytes by Microvesicleâ€Associated CD73 From Large Adipocytes. Obesity, 2011, 19, 1531-1544.	3.0	34
35	Continuous monitoring of cholesterol oleate hydrolysis by hormone-sensitive lipase and other cholesterol esterases. Journal of Lipid Research, 2005, 46, 994-1000.	4.2	31
36	Association of (c)AMP-Degrading Glycosylphosphatidylinositol-Anchored Proteins with Lipid Droplets Is Induced by Palmitate, H ₂ O ₂ and the Sulfonylurea Drug, Glimepiride, in Rat Adipocytes. Biochemistry, 2008, 47, 1274-1287.	2.5	31

#	Article	IF	CITATIONS
37	A yeast gene (BLH1) encodes a polypeptide with high homology to vertebrate bleomycin hydrolase, a family member of thiol proteinases. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1171, 299-303.	2.4	29
38	Intestinal cholesterol absorption: identification of different binding proteins for cholesterol and cholesterol absorption inhibitors in the enterocyte brush border membrane. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1633, 13-26.	2.4	29
39	Insulin-like Signaling in Yeast:Â Modulation of Protein Phosphatase 2A, Protein Kinase A, cAMP-Specific Phosphodiesterase, and Glycosyl-phosphatidylinositol-specific Phospholipase C Activities. Biochemistry, 2000, 39, 1475-1488.	2.5	28
40	The molecular mechanism of human hormone-sensitive lipase inhibition by substituted 3-phenyl-5-alkoxy-1,3,4-oxadiazol-2-ones. Biochimie, 2012, 94, 137-145.	2.6	27
41	Interaction of phosphoinositolglycan(-peptides) with plasma membrane lipid rafts of rat adipocytes. Archives of Biochemistry and Biophysics, 2002, 408, 17-32.	3.0	26
42	Inhibition of lipolysis by adiposomes containing glycosylphosphatidylinositol-anchored Gce1 protein in rat adipocytes. Archives of Physiology and Biochemistry, 2010, 116, 28-41.	2.1	25
43	Interaction of phosphatidylinositolglycan(-peptides) with plasma membrane lipid rafts triggers insulin-mimetic signaling in rat adipocytes. Archives of Biochemistry and Biophysics, 2002, 408, 7-16.	3.0	23
44	Personalized Prognosis and Diagnosis of Type 2 Diabetes – Vision or Fiction?. Pharmacology, 2010, 85, 168-187.	2.2	23
45	Insulin Signaling in the YeastSaccharomyces cerevisiae. 1. Stimulation of Glucose Metabolism and Snf1 Kinase by Human Insulin. Biochemistry, 1998, 37, 8683-8695.	2.5	22
46	Let's shift lipid burden—From large to small adipocytes. European Journal of Pharmacology, 2011, 656, 1-4.	3.5	21
47	Control of lipid storage and cell size between adipocytes by vesicle-associated glycosylphosphatidylinositol-anchored proteins. Archives of Physiology and Biochemistry, 2011, 117, 23-43.	2.1	21
48	Analysis of lipid metabolism in adipocytes using a fluorescent fatty acid derivative. I. Insulin stimulation of lipogenesis. Lipids and Lipid Metabolism, 1997, 1347, 23-39.	2.6	20
49	Analysis of lipolysis in adipocytes using a fluorescent fatty acid derivative. Biochimie, 2003, 85, 1245-1256.	2.6	20
50	Insulin Signaling in the YeastSaccharomycescerevisiae. 3. Induction of Protein Phosphorylation by Human Insulin. Biochemistry, 1998, 37, 8705-8713.	2.5	16
51	Glycosylphosphatidylinositol-anchored proteins coordinate lipolysis inhibition between large and small adipocytes. Metabolism: Clinical and Experimental, 2011, 60, 1021-1037.	3.4	16
52	Differential sensing for the regio- and stereoselective identification and quantitation of glycerides. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3977-86.	7.1	16
53	cAMP-Dependent Protein Kinase Activity in Yeast Mitochondria. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1987, 42, 1291-1302.	1.4	15
54	Two lipid-anchored cAMP-binding proteins in the yeast Saccharomyces cerevisiae are unrelated to the R subunit of cytoplasmic protein kinase A. FEBS Journal, 1991, 202, 299-308.	0.2	15

#	Article	IF	CITATIONS
55	Insulin Signaling in the YeastSaccharomyces cerevisiae. 2. Interaction of Human Insulin with a Putative Binding Protein. Biochemistry, 1998, 37, 8696-8704.	2.5	15
56	Sensitive assay for hormone-sensitive lipase using NBD-labeled monoacylglycerol to detect low activities in rat adipocytes. Journal of Lipid Research, 2005, 46, 603-614.	4.2	15
57	Release of exosomes and microvesicles harbouring specific RNAs and glycosylphosphatidylinositol-anchored proteins from rat and human adipocytes is controlled by histone methylation. American Journal of Molecular Biology, 2012, 02, 187-209.	0.3	15
58	Upregulated phospholipase D activity toward glycosylphosphatidylinositol-anchored proteins in micelle-like serum complexes in metabolically deranged rats and humans. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E462-E479.	3.5	14
59	The Mode of Action of the Antidiabetic Drug Glimepiride-Beyond Insulin Secretion. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2005, 5, 499-518.	0.2	13
60	Synthetic phosphoinositolglycans regulate lipid metabolism between rat adipocytes <i>via</i> release of GPI-protein-harbouring adiposomes. Archives of Physiology and Biochemistry, 2010, 116, 97-115.	2.1	12
61	Novel applications for glycosylphosphatidylinositol-anchored proteins in pharmaceutical and industrial biotechnology. Molecular Membrane Biology, 2011, 28, 187-205.	2.0	11
62	Oral Protein Therapy for the Future – Transport of Glycolipid-Modified Proteins: Vision or Fiction. Pharmacology, 2010, 86, 92-116.	2.2	10
63	Chip-based sensing for release of unprocessed cell surface proteins in vitro and in serum and its (patho)physiological relevance. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E212-E233.	3.5	10
64	Glucose Induces Amphiphilic to Hydrophilic Conversion of a Subset of Glycosyl-Phosphatidylinositol-Anchored Ectoproteins in Yeast. Archives of Biochemistry and Biophysics, 1995, 324, 300-316.	3.0	7
65	Novel glimepiride derivatives with potential as double-edged swords against type II diabetes. Archives of Physiology and Biochemistry, 2010, 116, 3-20.	2.1	7
66	Lipid Storage in Large and Small Rat Adipocytes by Vesicle-Associated Glycosylphosphatidylinositol-Anchored Proteins. Results and Problems in Cell Differentiation, 2011, 52, 27-34.	0.7	6
67	Take-over: multiple mechanisms of inter-adipocyte communication. Journal of Molecular Cell Biology, 2011, 3, 81-90.	3.3	6
68	Glycosylphosphatidylinositol-Anchored Protein Chips for Patient-Tailored Multi-Parameter Proteomics. Journal of Biochips & Tissue Chips, 2011, s3, .	0.2	5
69	Stable plasma membrane expression of the soluble domain of the human insulin receptor in yeast. FEBS Letters, 2000, 481, 8-12.	2.8	4
70	Novel Target Identification Technologies for the Personalised Therapy of Type II Diabetes and Obesity. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2012, 12, 183-207.	0.5	4
71	(Glycosylphosphatidylinositol-Based) Protein Chips and Biosensors for Biopharmaceutical Process Analytics. Journal of Bioprocessing & Biotechniques, 2012, 02, .	0.2	4
72	Chapter 12 Consecutive steps of nucleoside triphosphate hydrolysis are driving transport of precursor proteins into the endoplasmic reticulum. New Comprehensive Biochemistry, 1992, 22, 137-146.	0.1	1

GüNTER MüLLER

#	Article	IF	CITATIONS
73	100 Selective solubilization of glycosyl-phosphatidylinositol-anchored membrane proteins. Fresenius' Journal of Analytical Chemistry, 1992, 343, 160-162.	1.5	1
74	Glycosyl-phosphatidylinositol Cleavage Products in Signal Transduction. , 2005, , 101-119.		1
75	Insulin Analogs: Assessment of Insulin Mitogenicity and IGF-I Activity. , 2016, , 3119-3166.		1
76	Personalized Diagnosis and Therapy. , 2016, , 3167-3284.		1
77	099 Efficient lipolytic cleavage of glycosyl-phosphatidylinositol-anchored membrane proteins. Fresenius' Journal of Analytical Chemistry, 1992, 343, 159-160.	1.5	Ο
78	Physiological and Pharmacological Regulation of Triacylglycerol Storage and Mobilization. , 2005, , 231-331.		0
79	Antidiabetic activity1. , 2002, , 948-1051.		Ο
80	Insulin Analogs: Assessment of Insulin Mitogenicity and IGF-I Activity. , 2015, , 1-54.		0
81	Genetically Diabetic Animals. , 2015, , 1-45.		Ο
82	Monitoring of Diabetic Late Complication. , 2015, , 1-51.		0
83	Personalized Diagnosis and Therapy. , 2015, , 1-127.		Ο
84	Assays for Insulin and Insulin-Like Activity Based on Adipocytes. , 2015, , 1-97.		0
85	Insulin Target Tissues and Cells. , 2015, , 1-45.		Ο
86	Assays for Insulin and Insulin-Like Metabolic Activity Based on Hepatocytes, Myocytes, and Diaphragms. , 2015, , 1-62.		0
87	Assays for Insulin and Insulin-Like Signal Transduction Based on Adipocytes, Hepatocytes, and Myocytes. , 2015, , 1-100.		Ο
88	Methods to Induce Experimental Diabetes Mellitus. , 2016, , 2569-2581.		0
89	Insulin Target Tissues and Cells. , 2016, , 2681-2722.		0
90	Genetically Diabetic Animals. , 2016, , 2583-2622.		0

#	Article	IF	CITATIONS
91	Assays for Insulin and Insulin-Like Regulation of Energy Metabolism. , 2016, , 2871-2893.		0
92	Assays for the Expression and Release of Insulin and Glucose-Regulating Peptide Hormones from Pancreatic β-Cell. , 2016, , 3029-3057.		0
93	Assays for Insulin and Insulin-Like Regulation of Gene and Protein Expression. , 2016, , 2895-2934.		0
94	Measurement of Blood Glucose-Lowering and Antidiabetic Activity. , 2016, , 2623-2656.		0
95	Assays for Insulin and Insulin-Like Activity Based on Adipocytes. , 2016, , 2781-2869.		0
96	Measurement of Insulin and Other Glucose-Regulating Peptide Hormones. , 2016, , 2657-2679.		0
97	Monitoring of Diabetic Late Complication. , 2016, , 3071-3117.		Ο
98	Assays for Insulin and Insulin-Like Signal Transduction Based on Adipocytes, Hepatocytes and Myocytes. , 2016, , 2935-3028.		0
99	Measurement of Glucose Absorption. , 2016, , 3059-3070.		Ο
100	Assays for Insulin and Insulin-Like Metabolic Activity Based on Hepatocytes, Myocytes and Diaphragms. , 2016, , 2723-2780.		0