Chengtao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5641184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science, 2020, 367, 193-197.	12.6	470
2	Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nature Catalysis, 2018, 1, 540-546.	34.4	297
3	Wet-Chemistry Strong Metal–Support Interactions in Titania-Supported Au Catalysts. Journal of the American Chemical Society, 2019, 141, 2975-2983.	13.7	280
4	Product Selectivity Controlled by Zeolite Crystals in Biomass Hydrogenation over a Palladium Catalyst. Journal of the American Chemical Society, 2016, 138, 7880-7883.	13.7	262
5	Product Selectivity Controlled by Nanoporous Environments in Zeolite Crystals Enveloping Rhodium Nanoparticle Catalysts for CO ₂ Hydrogenation. Journal of the American Chemical Society, 2019, 141, 8482-8488.	13.7	242
6	Strong Metal–Support Interactions Achieved by Hydroxide-to-Oxide Support Transformation for Preparation of Sinter-Resistant Gold Nanoparticle Catalysts. ACS Catalysis, 2017, 7, 7461-7465.	11.2	158
7	Importance of Zeolite Wettability for Selective Hydrogenation of Furfural over Pd@Zeolite Catalysts. ACS Catalysis, 2018, 8, 474-481.	11.2	146
8	Direct Conversion of Syngas to Ethanol within Zeolite Crystals. CheM, 2020, 6, 646-657.	11.7	123
9	Zeolite Fixed Metal Nanoparticles: New Perspective in Catalysis. Accounts of Chemical Research, 2021, 54, 2579-2590.	15.6	117
10	Hierarchical Sn-Beta Zeolite Catalyst for the Conversion of Sugars to Alkyl Lactates. ACS Sustainable Chemistry and Engineering, 2017, 5, 3123-3131.	6.7	72
11	Zirconium Oxide Supported Palladium Nanoparticles as a Highly Efficient Catalyst in the Hydrogenation–Amination of Levulinic Acid to Pyrrolidones. ChemCatChem, 2017, 9, 2661-2667.	3.7	59
12	Dispersed Nickel Boosts Catalysis by Copper in CO ₂ Hydrogenation. ACS Catalysis, 2020, 10, 9261-9270.	11.2	52
13	Atomically Dispersed Ru on Manganese Oxide Catalyst Boosts Oxidative Cyanation. ACS Catalysis, 2020, 10, 6299-6308.	11.2	51
14	Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nature Nanotechnology, 2022, 17, 714-720.	31.5	51
15	Solvent-Free Synthesis of Core–Shell Zn/ZSM-5@Silicalite-1 Catalyst for Selective Conversion of Methanol to BTX Aromatics. Industrial & Engineering Chemistry Research, 2019, 58, 15453-15458.	3.7	36
16	Strong Oxide–Support Interactions Accelerate Selective Dehydrogenation of Propane by Modulating the Surface Oxygen. ACS Catalysis, 2020, 10, 10559-10569.	11.2	35
17	Direct Synthesis of Pure Aqueous H ₂ O ₂ Solution within Aluminosilicate Zeolite Crystals. ACS Catalysis, 2021, 11, 1946-1951.	11.2	28
18	Selective hydrogenolysis of carbon–oxygen bonds with formic acid over a Au–Pt alloy catalyst. Chemical Communications, 2017, 53, 2681-2684.	4.1	19

#	Article	IF	CITATIONS
19	Interfacial CoO _{<i>x</i>} Layers on TiO ₂ as an Efficient Catalyst for Solventâ€Free Aerobic Oxidation of Hydrocarbons. ChemSusChem, 2018, 11, 3965-3974.	6.8	12
20	Structure-performance interplay of rhodium-based catalysts for syngas conversion to ethanol. Materials Chemistry Frontiers, 2022, 6, 663-679.	5.9	4