
Enrico Guarnera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5640614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allosteric perspective on the mutability and druggability of the SARS-CoV-2 Spike protein. Structure, 2022, 30, 590-607.e4.	3.3	24
2	Conservation and Diversity in Allosteric Fingerprints of Proteins for Evolutionary-inspired Engineering and Design. Journal of Molecular Biology, 2022, 434, 167577.	4.2	8
3	Exploring the Allosteric Territory of Protein Function. Journal of Physical Chemistry B, 2021, 125, 3763-3780.	2.6	26
4	Three-dimensional chromatin ensemble reconstruction via stochastic embedding. Structure, 2021, 29, 622-634.e3.	3.3	4
5	Synergistic Allostery in Multiligand-Protein Interactions. Biophysical Journal, 2020, 119, 1833-1848.	0.5	24
6	Disorder driven allosteric control of protein activity. Current Research in Structural Biology, 2020, 2, 191-203.	2.2	21
7	AlloSigMA 2: paving the way to designing allosteric effectors and to exploring allosteric effects of mutations. Nucleic Acids Research, 2020, 48, W116-W124.	14.5	57
8	Allosteric drugs and mutations: chances, challenges, and necessity. Current Opinion in Structural Biology, 2020, 62, 149-157.	5.7	80
9	From Inducing Allosteric Signaling to Exploring the Allosteric Effect of SNPS and Allosteric Polymorphism. Biophysical Journal, 2020, 118, 51a-52a.	0.5	1
10	On the Allosteric Effect of nsSNPs and the Emerging Importance of Allosteric Polymorphism. Journal of Molecular Biology, 2019, 431, 3933-3942.	4.2	47
11	Towards Comprehensive Control and Design of Targeted Signalling in Allosteric Regulation of Protein Activity. Biophysical Journal, 2019, 116, 463a.	0.5	0
12	Toward Comprehensive Allosteric Control over Protein Activity. Structure, 2019, 27, 866-878.e1.	3.3	66
13	On the perturbation nature of allostery: sites, mutations, and signal modulation. Current Opinion in Structural Biology, 2019, 56, 18-27.	5.7	85
14	AlloMAPS: allosteric mutation analysis and polymorphism of signaling database. Nucleic Acids Research, 2019, 47, D265-D270.	14.5	60
15	Random Walk in the Realm of Chromatin. Biophysical Journal, 2018, 114, 257a.	0.5	0
16	Getting Allosteric Control over Protein Activity: New Developments. Biophysical Journal, 2018, 114, 420a.	0.5	1
17	Insulin-Degrading Enzyme in the Fight against Alzheimer's Disease. Trends in Pharmacological Sciences, 2018, 39, 49-58.	8.7	133
18	Exploring chromatin hierarchical organization via Markov State Modelling. PLoS Computational Biology, 2018, 14, e1006686.	3.2	11

ENRICO GUARNERA

#	Article	IF	CITATIONS
19	Reversing allosteric communication: From detecting allosteric sites to inducing and tuning targeted allosteric response. PLoS Computational Biology, 2018, 14, e1006228.	3.2	66
20	Toward Allosterically Increased Catalytic Activity of Insulin-Degrading Enzyme against Amyloid Peptides. Biochemistry, 2017, 56, 228-239.	2.5	47
21	AlloSigMA: allosteric signaling and mutation analysis server. Bioinformatics, 2017, 33, 3996-3998.	4.1	116
22	Protein function machinery: from basic structural units to modulation of activity. Current Opinion in Structural Biology, 2017, 42, 67-74.	5.7	48
23	Basic units of protein structure, folding, and function. Progress in Biophysics and Molecular Biology, 2017, 128, 85-99.	2.9	37
24	Optimized Markov state models for metastable systems. Journal of Chemical Physics, 2016, 145, 024102.	3.0	16
25	Statistical Physics of the Causality and Energetics in Allosteric Communication. Biophysical Journal, 2016, 110, 54a.	0.5	0
26	Allosteric sites: remote control in regulation of protein activity. Current Opinion in Structural Biology, 2016, 37, 1-8.	5.7	120
27	Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of Allosteric Communication. PLoS Computational Biology, 2016, 12, e1004678.	3.2	117
28	How today's scientific culture affects young scientists. BioEssays, 2010, 32, 369-371.	2.5	0
29	Amyloid Fibril Polymorphism Is under Kinetic Control. Journal of the American Chemical Society, 2010, 132, 14960-14970.	13.7	125
30	The Telomere-Binding Protein Tbf1 Demarcates snoRNA Gene Promoters in Saccharomyces cerevisiae. Molecular Cell, 2010, 38, 614-620.	9.7	58
31	How Does a Simplified-Sequence Protein Fold?. Biophysical Journal, 2009, 97, 1737-1746.	0.5	21
32	Pathways and Intermediates of Amyloid Fibril Formation. Journal of Molecular Biology, 2007, 374, 917-924.	4.2	132
33	Estimation of protein folding probability from equilibrium simulations. Journal of Chemical Physics, 2005, 122, 184901.	3.0	35