Emma L. Veale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5639934/publications.pdf

Version: 2024-02-01

EMMAL VEALE

#	Article	IF	CITATIONS
1	Gain and loss of TASK3 channel function and its regulation by novel variation cause KCNK9 imprinting syndrome. Genome Medicine, 2022, 14, .	8.2	6
2	Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond. Annual Review of Pharmacology and Toxicology, 2021, 61, 401-420.	9.4	29
3	Block of TREK and TRESK K2P channels by lamotrigine and two derivatives sipatrigine and CEN-092. Biochemistry and Biophysics Reports, 2021, 26, 101021.	1.3	Ο
4	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 2021, 178, S313-S411.	5.4	320
5	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	5.4	148
6	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	5.4	187
7	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	5.4	183
8	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Nuclear hormone receptors. British Journal of Pharmacology, 2021, 178, S246-S263.	5.4	100
9	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters. British Journal of Pharmacology, 2021, 178, S412-S513.	5.4	114
10	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
11	Effects of the ventilatory stimulant, doxapram on human TASKâ€3 (KCNK9, K2P9.1) channels and TASKâ€1 (KCNK3, K2P3.1) channels. Acta Physiologica, 2020, 228, e13361.	3.8	20
12	Opportunistic screening for atrial fibrillation by clinical pharmacists in UK general practice during the influenza vaccination season: A cross-sectional feasibility study. PLoS Medicine, 2020, 17, e1003197.	8.4	10
13	Title is missing!. , 2020, 17, e1003197.		Ο
14	Title is missing!. , 2020, 17, e1003197.		0
15	Title is missing!. , 2020, 17, e1003197.		Ο
16	Title is missing!. , 2020, 17, e1003197.		0
17	Title is missing!. , 2020, 17, e1003197.		0
18	Title is missing!. , 2020, 17, e1003197.		0

2

Emma L. Veale

#	Article	IF	CITATIONS
19	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein oupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
20	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	5.4	242
21	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 2019, 176, S229-S246.	5.4	127
22	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	5.4	156
23	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 2019, 176, S297-S396.	5.4	423
24	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 2019, 176, S397-S493.	5.4	166
25	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	5.4	295
26	Pharmacologically reversible, loss of function mutations in the TM2 and TM4 inner pore helices of TREK-1 K2P channels. Scientific Reports, 2019, 9, 12394.	3.3	5
27	Pranlukast is a novel small molecule activator of the two-pore domain potassium channel TREK2. Biochemical and Biophysical Research Communications, 2019, 520, 35-40.	2.1	16
28	Characterization and regulation of wildâ€ŧype and mutant TASKâ€┨ two pore domain potassium channels indicated in pulmonary arterial hypertension. Journal of Physiology, 2019, 597, 1087-1101.	2.9	35
29	Pharmacists detecting atrial fibrillation (PDAF) in primary care during the influenza vaccination season: a multisite, cross-sectional screening protocol. BMJ Open, 2018, 8, e021121.	1.9	11
30	Glâ€530159, a novel, selective, mechanosensitive twoâ€poreâ€domain potassium (K _{2P}) channel opener, reduces rat dorsal root ganglion neuron excitability. British Journal of Pharmacology, 2018, 175, 2272-2283.	5.4	40
31	Activation of TREK currents by riluzole in three subgroups of cultured mouse nodose ganglion neurons. PLoS ONE, 2018, 13, e0199282.	2.5	15
32	Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochemical and Biophysical Research Communications, 2017, 493, 444-450.	2.1	27
33	TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. European Respiratory Journal, 2017, 50, 1700754.	6.7	60
34	Aristolochic acid, a plant extract used in the treatment of pain and linked to Balkan endemic nephropathy, is a regulator of K2P channels. British Journal of Pharmacology, 2016, 173, 1639-1652.	5.4	30
35	Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. Pflugers Archiv European Journal of Physiology, 2015, 467, 931-943.	2.8	80
36	Enhancement of TWIK-related Acid-sensitive Potassium Channel 3 (TASK3) Two-pore Domain Potassium Channel Activity by Tumor Necrosis Factor α. Journal of Biological Chemistry, 2014, 289, 1388-1401.	3.4	9

Emma L. Veale

#	Article	IF	CITATIONS
37	Influence of the N Terminus on the Biophysical Properties and Pharmacology of TREK1 Potassium Channels. Molecular Pharmacology, 2014, 85, 671-681.	2.3	52
38	Recovery of Current through Mutated TASK3 Potassium Channels Underlying Birk Barel Syndrome. Molecular Pharmacology, 2014, 85, 397-407.	2.3	32
39	Trafficking of Neuronal Two Pore Domain Potassium Channels. Current Neuropharmacology, 2010, 8, 276-286.	2.9	29
40	SYMPOSIUM REVIEW: Gating of two pore domain potassium channels. Journal of Physiology, 2010, 588, 3149-3156.	2.9	68
41	Dominant Negative Effects of a Non-conducting TREK1 Splice Variant Expressed in Brain*. Journal of Biological Chemistry, 2010, 285, 29295-29304.	3.4	37
42	The M1P1 Loop of TASK3 K2P Channels Apposes the Selectivity Filter and Influences Channel Function. Journal of Biological Chemistry, 2008, 283, 16985-16992.	3.4	35
43	TASK-3 Two-Pore Domain Potassium Channels Enable Sustained High-Frequency Firing in Cerebellar Granule Neurons. Journal of Neuroscience, 2007, 27, 9329-9340.	3.6	109
44	Gαq-Mediated Regulation of TASK3 Two-Pore Domain Potassium Channels: The Role of Protein Kinase C. Molecular Pharmacology, 2007, 71, 1666-1675.	2.3	54
45	Identification of a region in the TASK3 two pore domain potassium channel that is critical for its blockade by methanandamide. British Journal of Pharmacology, 2007, 152, 778-786.	5.4	37
46	Zinc and copper: Pharmacological probes and endogenous modulators of neuronal excitability. , 2006, 111, 567-583.		213
47	The in Vivo Contributions of TASK-1-Containing Channels to the Actions of Inhalation Anesthetics, the α2 Adrenergic Sedative Dexmedetomidine, and Cannabinoid Agonists. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 615-626.	2.5	82
48	Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. British Journal of Pharmacology, 2005, 144, 821-829.	5.4	167
49	Modifying the Subunit Composition of TASK Channels Alters the Modulation of a Leak Conductance in Cerebellar Granule Neurons. Journal of Neuroscience, 2005, 25, 11455-11467.	3.6	124
50	Selective block of the human 2-P domain potassium channel, TASK-3, and the native leak potassium current, IKSO, by zinc. Journal of Physiology, 2004, 560, 51-62.	2.9	71
51	What are the roles of the many different types of potassium channel expressed in cerebellar granule cells?. Cerebellum, 2003, 2, 11-25.	2.5	48
52	Neuronal ion channels and their sensitivity to extremely low frequency weak electric field effects. Radiation Protection Dosimetry, 2003, 106, 311-315.	0.8	57
53	What are the roles of the many different types of potassium channel expressed in cerebellar granule cells?. Cerebellum, 2003, 2, 11-25.	2.5	3
54	The sfr6 Mutation in Arabidopsis Suppresses Low-Temperature Induction of Genes Dependent on the CRT/DRE Sequence Motif. Plant Cell, 1999, 11, 875-886.	6.6	203

#	Article	IF	CITATIONS
55	Map positions ofSFRgenes in relation to other freezing-related genes ofArabidopsis thaliana. Plant Journal, 1999, 17, 445-452.	5.7	25
56	A comparison of the in-vitro activity of amphotericin B with that of liposomal amphotericin B with that of liposomal amphotericin B against Candida albicans colonising central venous catheters. Journal of Antimicrobial Chemotherapy, 1994, 34, 840-841.	3.0	2