Li Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5638562/publications.pdf Version: 2024-02-01

LITANC

#	Article	IF	CITATIONS
1	Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacologica Sinica, 2007, 28, 1343-1354.	6.1	182
2	Mitochondria are the primary target in isothiocyanate-induced apoptosis in human bladder cancer cells. Molecular Cancer Therapeutics, 2005, 4, 1250-1259.	4.1	145
3	Inhibition of Urinary Bladder Carcinogenesis by Broccoli Sprouts. Cancer Research, 2008, 68, 1593-1600.	0.9	131
4	Consumption of Raw Cruciferous Vegetables is Inversely Associated with Bladder Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 938-944.	2.5	130
5	Dietary Isothiocyanates Inhibit the Growth of Human Bladder Carcinoma Cells. Journal of Nutrition, 2004, 134, 2004-2010.	2.9	118
6	Intake of Cruciferous Vegetables Modifies Bladder Cancer Survival. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 1806-1811.	2.5	108
7	Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Molecular Cancer Therapeutics, 2006, 5, 935-944.	4.1	81
8	Cruciferous Vegetables, Isothiocyanates, and Prevention of Bladder Cancer. Current Pharmacology Reports, 2015, 1, 272-282.	3.0	77
9	Allyl Isothiocyanate Arrests Cancer Cells in Mitosis, and Mitotic Arrest in Turn Leads to Apoptosis via Bcl-2 Protein Phosphorylation. Journal of Biological Chemistry, 2011, 286, 32259-32267.	3.4	68
10	The principal urinary metabolites of dietary isothiocyanates, N-acetylcysteine conjugates, elicit the same anti-proliferative response as their parent compounds in human bladder cancer cells. Anti-Cancer Drugs, 2006, 17, 297-305.	1.4	62
11	Inhibition of bladder cancer development by allyl isothiocyanate. Carcinogenesis, 2010, 31, 281-286.	2.8	59
12	Total isothiocyanate yield from raw cruciferous vegetables commonly consumed in the United States. Journal of Functional Foods, 2013, 5, 1996-2001.	3.4	59
13	Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study. BMC Cancer, 2010, 10, 162.	2.6	53
14	Isothiocyanates in the Chemoprevention of Bladder Cancer. Current Drug Metabolism, 2004, 5, 193-201.	1.2	43
15	Serum estrogen levels and prostate cancer risk in the prostate cancer prevention trial: a nested case–control study. Cancer Causes and Control, 2011, 22, 1121-1131.	1.8	42
16	Lifestyle and nutritional modifiable factors in the prevention and treatment of bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2019, 37, 380-386.	1.6	26
17	Repeat polymorphisms in estrogen metabolism genes and prostate cancer risk: results from the Prostate Cancer Prevention Trial. Carcinogenesis, 2011, 32, 1500-1506.	2.8	23
18	International pooled study on diet and bladder cancer: the bladder cancer, epidemiology and nutritional determinants (BLEND) study: design and baseline characteristics. Archives of Public Health, 2016, 74, 30.	2.4	23

Li Tang

#	Article	IF	CITATIONS
19	Effects of cooking methods on total isothiocyanate yield from cruciferous vegetables. Food Science and Nutrition, 2020, 8, 5673-5682.	3.4	17
20	Cruciferous Vegetable Consumption and Stomach Cancer: A Case-Control Study. Nutrition and Cancer, 2020, 72, 52-61.	2.0	16
21	Trends in Cruciferous Vegetable Consumption and Associations with Breast Cancer Risk: A Case-Control Study. Current Developments in Nutrition, 2017, 1, e000448.	0.3	15
22	Associations between polymorphisms in genes related to estrogen metabolism and function and prostate cancer risk: results from the Prostate Cancer Prevention Trial. Carcinogenesis, 2018, 39, 125-133.	2.8	14
23	The Be-Well Study: a prospective cohort study of lifestyle and genetic factors to reduce the risk of recurrence and progression of non-muscle-invasive bladder cancer. Cancer Causes and Control, 2019, 30, 187-193.	1.8	12
24	Adrenal androgens rescue prostatic dihydrotestosterone production and growth of prostate cancer cells after castration. Molecular and Cellular Endocrinology, 2019, 486, 79-88.	3.2	11
25	A data mining approach to investigate food groups related to incidence of bladder cancer in the BLadder cancer Epidemiology and Nutritional Determinants International Study. British Journal of Nutrition, 2020, 124, 611-619.	2.3	9
26	Modeling the Complex Exposure History of Smoking in Predicting Bladder Cancer. Epidemiology, 2019, 30, 458-465.	2.7	7
27	Cruciferous vegetable consumption and pancreatic cancer: A case-control study. Cancer Epidemiology, 2021, 72, 101924.	1.9	7
28	An active and selective molecular mechanism mediating the uptake of sex steroids by prostate cancer cells. Molecular and Cellular Endocrinology, 2018, 477, 121-131.	3.2	5
29	Family History and Risk of Bladder Cancer: An Analysis Accounting for First- and Second-degree Relatives. Cancer Prevention Research, 2022, 15, 319-326.	1.5	5
30	A Presurgicalâ€Window Intervention Trial of Isothiocyanateâ€Rich Broccoli Sprout Extract in Patients with Breast Cancer. Molecular Nutrition and Food Research, 2022, , 2101094.	3.3	5
31	Usual Cruciferous Vegetable Consumption and Ovarian Cancer: A Case-Control Study. Nutrition and Cancer, 2018, 70, 678-683.	2.0	4
32	Differential Associations of SLCO Transporters with Prostate Cancer Aggressiveness between African Americans and European Americans. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 990-999.	2.5	4
33	Cruciferous Vegetable Intervention to Reduce the Risk of Cancer Recurrence in Non–Muscle-Invasive Bladder Cancer Survivors: Development Using a Systematic Process. JMIR Cancer, 2022, 8, e32291.	2.4	4