
Lindsay D Eltis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5637907/publications.pdf Version: 2024-02-01

Ι ΙΝΠΟΑΛΥ Ο ΕΙ ΤΙς

#	Article	IF	CITATIONS
1	Cytochromes P450 in the biocatalytic valorization of lignin. Current Opinion in Biotechnology, 2022, 73, 43-50.	6.6	16
2	Critical enzyme reactions in aromatic catabolism for microbial lignin conversion. Nature Catalysis, 2022, 5, 86-98.	34.4	51
3	Characterization of a phylogenetically distinct extradiol dioxygenase involved in the bacterial catabolism of lignin-derived aromatic compounds. Journal of Biological Chemistry, 2022, 298, 101871.	3.4	5
4	Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing. ISME Journal, 2022, 16, 1944-1956.	9.8	16
5	Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. ISME Journal, 2021, 15, 879-893.	9.8	34
6	Structural and functional analysis of lignostilbene dioxygenases from Sphingobium sp. SYK-6. Journal of Biological Chemistry, 2021, 296, 100758.	3.4	7
7	Mechanistic Insights into DyPB from <i>Rhodococcus jostii</i> RHA1 Via Kinetic Characterization. ACS Catalysis, 2021, 11, 5486-5495.	11.2	8
8	Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Metabolic Engineering, 2021, 65, 111-122.	7.0	48
9	An Integrative Toolbox for Synthetic Biology in <i>Rhodococcus</i> . ACS Synthetic Biology, 2021, 10, 2383-2395.	3.8	10
10	Bacterial Transformation of Aromatic Monomers in Softwood Black Liquor. Frontiers in Microbiology, 2021, 12, 735000.	3.5	9
11	A shared mechanistic pathway for pyridoxal phosphate–dependent arginine oxidases. Proceedings of the United States of America, 2021, 118, .	7.1	7
12	The Comparative Abilities of a Small Laccase and a Dye-Decoloring Peroxidase From the Same Bacterium to Transform Natural and Technical Lignins. Frontiers in Microbiology, 2021, 12, 723524.	3.5	9
13	A nanocompartment system contributes to defense against oxidative stress in Mycobacterium tuberculosis. ELife, 2021, 10, .	6.0	15
14	Molecular insights into substrate recognition and catalysis by phthalate dioxygenase from Comamonas testosteroni. Journal of Biological Chemistry, 2021, 297, 101416.	3.4	17
15	Laccase-Catalyzed Oxidation of Lignin Induces Production of H ₂ O ₂ . ACS Sustainable Chemistry and Engineering, 2020, 8, 831-841.	6.7	48
16	Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25771-25778.	7.1	35
17	Steryl Ester Formation and Accumulation in Steroid-Degrading Bacteria. Applied and Environmental Microbiology, 2020, 86, .	3.1	15
18	lpdE1-lpdE2 Is a Heterotetrameric Acyl Coenzyme A Dehydrogenase That Is Widely Distributed in Steroid-Degrading Bacteria. Biochemistry, 2020, 59, 1113-1123.	2.5	10

#	Article	IF	CITATIONS
19	Identification of functionally important residues and structural features in a bacterial lignostilbene dioxygenase. Journal of Biological Chemistry, 2019, 294, 12911-12920.	3.4	10
20	A thermostable laccase from Thermus sp. 2.9 and its potential for delignification of Eucalyptus biomass. AMB Express, 2019, 9, 24.	3.0	28
21	Catabolism of Alkylphenols in Rhodococcus via a Meta-Cleavage Pathway Associated With Genomic Islands. Frontiers in Microbiology, 2019, 10, 1862.	3.5	14
22	Multiple iron reduction by methoxylated phenolic lignin structures and the generation of reactive oxygen species by lignocellulose surfaces. International Journal of Biological Macromolecules, 2019, 128, 340-346.	7.5	24
23	A biocatalyst for sustainable wax ester production: re-wiring lipid accumulation in <i>Rhodococcus</i> to yield high-value oleochemicals. Green Chemistry, 2019, 21, 6468-6482.	9.0	13
24	Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME Journal, 2019, 13, 413-429.	9.8	246
25	Snapshots of the Catalytic Cycle of an O ₂ , Pyridoxal Phosphate-Dependent Hydroxylase. ACS Chemical Biology, 2018, 13, 965-974.	3.4	12
26	IpdAB, a virulence factor in <i>Mycobacterium tuberculosis</i> , is a cholesterol ring-cleaving hydrolase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3378-E3387.	7.1	28
27	Structure–function analyses reveal key features in Staphylococcus aureus IsdB-associated unfolding of the heme-binding pocket of human hemoglobin. Journal of Biological Chemistry, 2018, 293, 177-190.	3.4	55
28	Metal- and Serine-Dependent Meta-Cleavage Product Hydrolases Utilize Similar Nucleophile-Activation Strategies. ACS Catalysis, 2018, 8, 11622-11632.	11.2	6
29	Bacterial Catabolism of Biphenyls: Synthesis and Evaluation of Analogues. ChemBioChem, 2018, 19, 1771-1778.	2.6	5
30	Chapter 11. Biological Funneling as a Means of Transforming Lignin-derived Aromatic Compounds into Value-added Chemicals. RSC Energy and Environment Series, 2018, , 290-313.	0.5	16
31	Snapshots of the catalytic cycle of an O 2 , pyridoxal phosphateâ€dependent hydroxylase. FASEB Journal, 2018, 32, 796.35.	0.5	0
32	Characterization of an extradiol dioxygenase involved in the catabolism of ligninâ€derived biphenyl. FEBS Letters, 2017, 591, 1001-1009.	2.8	20
33	Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Scientific Reports, 2017, 7, 42121.	3.3	37
34	Catabolism of the Last Two Steroid Rings in <i>Mycobacterium tuberculosis</i> and Other Bacteria. MBio, 2017, 8, .	4.1	77
35	A Fatty Acyl Coenzyme A Reductase Promotes Wax Ester Accumulation in Rhodococcus jostii RHA1. Applied and Environmental Microbiology, 2017, 83, .	3.1	14
36	The bacterial meta-cleavage hydrolase LigY belongs to the amidohydrolase superfamily, not to the α/β-hydrolase superfamily. Journal of Biological Chemistry, 2017, 292, 18290-18302.	3.4	11

#	Article	IF	CITATIONS
37	Characterization of key triacylglycerol biosynthesis processes in rhodococci. Scientific Reports, 2016, 6, 24985.	3.3	66
38	A pyridoxal phosphate–dependent enzyme that oxidizes an unactivated carbon-carbon bond. Nature Chemical Biology, 2016, 12, 194-199.	8.0	37
39	The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2016, 291, 7256-7266.	3.4	32
40	Structural Basis of the Enhanced Pollutant-Degrading Capabilities of an Engineered Biphenyl Dioxygenase. Journal of Bacteriology, 2016, 198, 1499-1512.	2.2	19
41	The activity of CouR, a MarR family transcriptional regulator, is modulated through a novel molecular mechanism. Nucleic Acids Research, 2016, 44, 595-607.	14.5	44
42	The essential role of nitrogen limitation in expression of xplA and degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Gordonia sp. strain KTR9. Applied Microbiology and Biotechnology, 2015, 99, 459-467.	3.6	12
43	Structural and Functional Characterization of a Ketosteroid Transcriptional Regulator of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2015, 290, 872-882.	3.4	29
44	A P450 fusion library of heme domains from Rhodococcus jostii RHA1 and its evaluation for the biotransformation of drug molecules. Bioorganic and Medicinal Chemistry, 2015, 23, 5603-5609.	3.0	19
45	Novel Inhibitors of Cholesterol Degradation in Mycobacterium tuberculosis Reveal How the Bacterium's Metabolism Is Constrained by the Intracellular Environment. PLoS Pathogens, 2015, 11, e1004679.	4.7	245
46	The multihued palette of dye-decolorizing peroxidases. Archives of Biochemistry and Biophysics, 2015, 574, 56-65.	3.0	81
47	Functional analyses of three acylâ€ <scp>CoA</scp> synthetases involved in bile acid degradation in <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>DOC</scp> 21. Environmental Microbiology, 2015, 17, 47-63.	3.8	28
48	Substrate Specificities and Conformational Flexibility of 3-Ketosteroid 9α-Hydroxylases. Journal of Biological Chemistry, 2014, 289, 25523-25536.	3.4	33
49	Characterization of <i>p</i> -Hydroxycinnamate Catabolism in a Soil Actinobacterium. Journal of Bacteriology, 2014, 196, 4293-4303.	2.2	51
50	Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism. Journal of Bacteriology, 2014, 196, 579-587.	2.2	41
51	Metagenomic scaffolds enable combinatorial lignin transformation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10143-10148.	7.1	72
52	Hemoglobin Binding and Catalytic Heme Extraction by IsdB Near Iron Transporter Domains. Biochemistry, 2014, 53, 2286-2294.	2.5	23
53	The Impact of Nitric Oxide Toxicity on the Evolution of the Glutathione Transferase Superfamily. Journal of Biological Chemistry, 2013, 288, 24936-24947.	3.4	31
54	Improved Manganese-Oxidizing Activity of DypB, a Peroxidase from a Lignolytic Bacterium. ACS Chemical Biology, 2013, 8, 700-706.	3.4	89

#	Article	IF	CITATIONS
55	Breaking Down Lignin to High-Value Chemicals: The Conversion of Lignocellulose to Vanillin in a Gene Deletion Mutant of <i>Rhodococcus jostii</i> RHA1. ACS Chemical Biology, 2013, 8, 2151-2156.	3.4	228
56	<scp>FadD</scp> 3 is an acylâ€ <scp>CoA</scp> synthetase that initiates catabolism of cholesterol rings <scp>C</scp> and <scp>D</scp> in actinobacteria. Molecular Microbiology, 2013, 87, 269-283.	2.5	73
57	Physiological Adaptation of the <i>Rhodococcus jostii</i> RHA1 Membrane Proteome to Steroids as Growth Substrates. Journal of Proteome Research, 2013, 12, 1188-1198.	3.7	18
58	The Lid Domain of the MCP Hydrolase DxnB2 Contributes to the Reactivity toward Recalcitrant PCB Metabolites. Biochemistry, 2013, 52, 5685-5695.	2.5	12
59	A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser–His–Asp Containing C–C Bond Hydrolase. Biochemistry, 2013, 52, 7428-7438.	2.5	13
60	Role of Nitrogen Limitation in Transformation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by Gordonia sp. Strain KTR9. Applied and Environmental Microbiology, 2013, 79, 1746-1750.	3.1	26
61	WhiB7, an Fe-S-dependent Transcription Factor That Activates Species-specific Repertoires of Drug Resistance Determinants in Actinobacteria. Journal of Biological Chemistry, 2013, 288, 34514-34528.	3.4	49
62	Structural Characterization of Pandoraea pnomenusa B-356 Biphenyl Dioxygenase Reveals Features of Potent Polychlorinated Biphenyl-Degrading Enzymes. PLoS ONE, 2013, 8, e52550.	2.5	32
63	Regulation of the <scp>KstR</scp> 2 regulon of <i><scp>M</scp>ycobacterium tuberculosis</i> by a cholesterol catabolite. Molecular Microbiology, 2013, 89, 1201-1212.	2.5	50
64	Genomic and Transcriptomic Studies of an RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine)-Degrading Actinobacterium. Applied and Environmental Microbiology, 2012, 78, 7798-7800.	3.1	20
65	Vanillin Catabolism in Rhodococcus jostii RHA1. Applied and Environmental Microbiology, 2012, 78, 586-588.	3.1	95
66	Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp. Journal of Bacteriology, 2012, 194, 6712-6719.	2.2	72
67	Proteomic Analysis of Survival of Rhodococcus jostii RHA1 during Carbon Starvation. Applied and Environmental Microbiology, 2012, 78, 6714-6725.	3.1	43
68	Two Transporters Essential for Reassimilation of Novel Cholate Metabolites by Rhodococcus jostii RHA1. Journal of Bacteriology, 2012, 194, 6720-6727.	2.2	43
69	Distal Heme Pocket Residues of B-type Dye-decolorizing Peroxidase. Journal of Biological Chemistry, 2012, 287, 10623-10630.	3.4	90
70	Identification of an Acyl-Enzyme Intermediate in a meta-Cleavage Product Hydrolase Reveals the Versatility of the Catalytic Triad. Journal of the American Chemical Society, 2012, 134, 4615-4624.	13.7	31
71	The Catalytic Serine of meta-Cleavage Product Hydrolases Is Activated Differently for C–O Bond Cleavage Than for C–C Bond Cleavage. Biochemistry, 2012, 51, 5831-5840.	2.5	17
72	Phylogenetic analysis reveals the surprising diversity of an oxygenase class. Journal of Biological Inorganic Chemistry, 2012, 17, 425-436.	2.6	23

#	Article	IF	CITATIONS
73	Characterization of Dye-Decolorizing Peroxidases from <i>Rhodococcus jostii</i> RHA1. Biochemistry, 2011, 50, 5108-5119. Adventures in <i>Rhodococcus</i> — from steroids to explosivesThis article is based on a presentation	2.5	144
74	by Dr. Lindsay Eltis at the 60th Annual Meeting of the Canadian Society of Microbiologists in Hamilton, Ontario, 14Â June 2010. Dr. Eltis was the recipient of the 2010 Norgen Biotek Corporation / CSM Award, an annual award sponsored by Norgen Biotek and the Canadian Society of Microbiologists intended to recognize outstanding scientific work in microbiology by a Canadian	1.7	59
75	researcher Canadian Journal of Microbiology, 2011, 57, 155-168. Structural Insight into the Expanded PCB-Degrading Abilities of a Biphenyl Dioxygenase Obtained by Directed Evolution. Journal of Molecular Biology, 2011, 405, 531-547.	4.2	45
76	ldentification of DypB from <i>Rhodococcus jostii</i> RHA1 as a Lignin Peroxidase. Biochemistry, 2011, 50, 5096-5107.	2.5	342
77	The biological occurrence and trafficking of cobalt. Metallomics, 2011, 3, 963.	2.4	136
78	Genomic analysis of the phenylacetyl-CoA pathway in Burkholderia xenovorans LB400. Archives of Microbiology, 2011, 193, 641-650.	2.2	5
79	Anaerobic crystallization and initial X-ray diffraction data of biphenyl 2,3-dioxygenase from <i>Burkholderia xenovorans</i> LB400: addition of agarose improved the quality of the crystals. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 59-63.	0.7	9
80	Biphenyl and ethylbenzene dioxygenases of <i>Rhodococcus jostii</i> RHA1 transform PBDEs. Biotechnology and Bioengineering, 2011, 108, 313-321.	3.3	45
81	Environmental biotechnology for sustainability: unleashing the might of the small. Current Opinion in Biotechnology, 2011, 22, 386-387.	6.6	Ο
82	Activity of 3-Ketosteroid 9α-Hydroxylase (KshAB) Indicates Cholesterol Side Chain and Ring Degradation Occur Simultaneously in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2011, 286, 40717-40724.	3.4	85
83	A Fluorescent Protein-Based Biological Screen of Proteinase Activity. Journal of Biomolecular Screening, 2010, 15, 224-229.	2.6	6
84	7-Ketocholesterol Catabolism by <i>Rhodococcus jostii</i> RHA1. Applied and Environmental Microbiology, 2010, 76, 352-355.	3.1	27
85	Characterization of a Carbon-Carbon Hydrolase from Mycobacterium tuberculosis Involved in Cholesterol Metabolism. Journal of Biological Chemistry, 2010, 285, 434-443.	3.4	89
86	A Flavin-dependent Monooxygenase from Mycobacterium tuberculosis Involved in Cholesterol Catabolism. Journal of Biological Chemistry, 2010, 285, 22264-22275.	3.4	98
87	Functional Characterization of pGKT2, a 182-Kilobase Plasmid Containing the <i>xplAB</i> Genes, Which Are Involved in the Degradation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine by <i>Gordonia</i> sp. Strain KTR9. Applied and Environmental Microbiology, 2010, 76, 6329-6337.	3.1	42
88	Catabolism of Aromatic Compounds and Steroids by Rhodococcus. Microbiology Monographs, 2010, , 133-169.	0.6	28
89	AnhE, a Metallochaperone Involved in the Maturation of a Cobalt-dependent Nitrile Hydratase. Journal of Biological Chemistry, 2010, 285, 25126-25133.	3.4	30
90	Mycobacterial Cytochrome P450 125 (Cyp125) Catalyzes the Terminal Hydroxylation of C27 Steroids. Journal of Biological Chemistry, 2009, 284, 35534-35542.	3.4	153

#	Article	IF	CITATIONS
91	Studies of a Ring-Cleaving Dioxygenase Illuminate the Role of Cholesterol Metabolism in the Pathogenesis of Mycobacterium tuberculosis. PLoS Pathogens, 2009, 5, e1000344.	4.7	193
92	Insights into Sequence–Activity Relationships amongst Baeyer–Villiger Monooxygenases as Revealed by the Intragenomic Complement of Enzymes from <i>Rhodococcus jostii</i> RHA1. ChemBioChem, 2009, 10, 1208-1217.	2.6	60
93	Cytochrome P450 125 (CYP125) catalyses C26â€hydroxylation to initiate sterol sideâ€chain degradation in <i>Rhodococcus jostii</i> RHA1. Molecular Microbiology, 2009, 74, 1031-1043.	2.5	114
94	Characterization of 3-Ketosteroid 9α-Hydroxylase, a Rieske Oxygenase in the Cholesterol Degradation Pathway of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2009, 284, 9937-9946.	3.4	142
95	Determining Rieske cluster reduction potentials. Journal of Biological Inorganic Chemistry, 2008, 13, 1301-1313.	2.6	44
96	Structure of HsaD, a steroid-degrading hydrolase, from <i>Mycobacterium tuberculosis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 2-7.	0.7	31
97	Aryl methylene ketones and fluorinated methylene ketones as reversible inhibitors for severe acute respiratory syndrome (SARS) 3C-like proteinase. Bioorganic Chemistry, 2008, 36, 229-240.	4.1	35
98	Heteroaromatic ester inhibitors of hepatitis A virus 3C proteinase: Evaluation of mode of action. Bioorganic and Medicinal Chemistry, 2008, 16, 5761-5777.	3.0	21
99	Nature teaches but can be bettered. Current Opinion in Chemical Biology, 2008, 12, 115-117.	6.1	1
100	Biphenyl Dioxygenase from an Arctic Isolate Is Not Cold Adapted. Applied and Environmental Microbiology, 2008, 74, 3908-3911.	3.1	5
101	Conserved Active Site Residues Limit Inhibition of a Copper-Containing Nitrite Reductase by Small Molecules. Biochemistry, 2008, 47, 4452-4460.	2.5	26
102	The Actinobacterial mce4 Locus Encodes a Steroid Transporter. Journal of Biological Chemistry, 2008, 283, 35368-35374.	3.4	173
103	Distinct Roles for Two CYP226 Family Cytochromes P450 in Abietane Diterpenoid Catabolism by <i>Burkholderia xenovorans</i> LB400. Journal of Bacteriology, 2008, 190, 1575-1583.	2.2	16
104	Roles of Ring-Hydroxylating Dioxygenases in Styrene and Benzene Catabolism in <i>Rhodococcus jostii</i> RHA1. Journal of Bacteriology, 2008, 190, 37-47.	2.2	75
105	Improved identification of membrane proteins by MALDI-TOF MS/MS using vacuum sublimated matrix spots on an ultraphobic chip surface. Journal of Biomolecular Techniques, 2008, 19, 129-38.	1.5	15
106	The Molecular Basis for Inhibition of BphD, a C-C Bond Hydrolase Involved in Polychlorinated Biphenyls Degradation. Journal of Biological Chemistry, 2007, 282, 36377-36385.	3.4	21
107	Characterization of a C—C Bond Hydrolase from Sphingomonas wittichii RW1 with Novel Specificities towards Polychlorinated Biphenyl Metabolites. Journal of Bacteriology, 2007, 189, 4038-4045.	2.2	36
108	The Tautomeric Half-reaction of BphD, a C-C Bond Hydrolase. Journal of Biological Chemistry, 2007, 282, 19894-19904.	3.4	34

#	Article	IF	CITATIONS
109	A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into <i>Mycobacterium tuberculosis</i> survival in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1947-1952.	7.1	480
110	An Inducible Propane Monooxygenase Is Responsible for <i>N</i> -Nitrosodimethylamine Degradation by <i>Rhodococcus</i> sp. Strain RHA1. Applied and Environmental Microbiology, 2007, 73, 6930-6938.	3.1	98
111	Transcriptomic Analysis Reveals a Bifurcated Terephthalate Degradation Pathway in Rhodococcus sp. Strain RHA1. Journal of Bacteriology, 2007, 189, 1641-1647.	2.2	76
112	Crystal Structures Reveal an Induced-fit Binding of a Substrate-like Aza-peptide Epoxide to SARS Coronavirus Main Peptidase. Journal of Molecular Biology, 2007, 366, 916-932.	4.2	49
113	A Mechanistic View of Enzyme Inhibition and Peptide Hydrolysis in the Active Site of the SARS-CoV 3C-like Peptidase. Journal of Molecular Biology, 2007, 371, 1060-1074.	4.2	50
114	Design, Synthesis, and Evaluation of Inhibitors for Severe Acute Respiratory Syndrome 3C-Like Protease Based on Phthalhydrazide Ketones or Heteroaromatic Esters. Journal of Medicinal Chemistry, 2007, 50, 1850-1864.	6.4	73
115	Characterization of Biphenyl Dioxygenase of Pandoraea pnomenusa B-356 As a Potent Polychlorinated Biphenyl-Degrading Enzyme. Journal of Bacteriology, 2007, 189, 5705-5715.	2.2	53
116	Specificity Fingerprinting of Retaining βâ€1,4â€Clycanases in the <i>Cellulomonas fimi</i> Secretome Using Two Fluorescent Mechanismâ€Based Probes. ChemBioChem, 2007, 8, 2125-2132.	2.6	14
117	Purification and characterization of a novel nitrile hydratase from <i>Rhodococcus</i> sp. RHA1. Molecular Microbiology, 2007, 65, 828-838.	2.5	60
118	Combined Directed <i>ortho</i> Metalation/Suzukiâ^Miyaura Cross-Coupling Strategies. Regiospecific Synthesis of Chlorodihydroxybiphenyls and Polychlorinated Biphenyls. Journal of Organic Chemistry, 2007, 72, 5960-5967.	3.2	16
119	The Ins and Outs of Ring-Cleaving Dioxygenases. Critical Reviews in Biochemistry and Molecular Biology, 2006, 41, 241-267.	5.2	344
120	Genetic and Genomic Insights into the Role of Benzoate-Catabolic Pathway Redundancy in <i>Burkholderia xenovorans</i> LB400. Applied and Environmental Microbiology, 2006, 72, 585-595.	3.1	99
121	The complete genome of <i>Rhodococcus</i> sp. RHA1 provides insights into a catabolic powerhouse. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15582-15587.	7.1	586
122	An Episulfide Cation (Thiiranium Ring) Trapped in the Active Site of HAV 3C Proteinase Inactivated by Peptide-based Ketone Inhibitors. Journal of Molecular Biology, 2006, 361, 673-686.	4.2	35
123	Characterization of the putative operon containing arylamine N-acetyltransferase (nat) in Mycobacterium bovis BCG. Molecular Microbiology, 2006, 59, 181-192.	2.5	43
124	Characterization of DitA3, the [Fe3S4] ferredoxin of an aromatic ring-hydroxylating dioxygenase from a diterpenoid-degrading microorganism. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1462-1469.	2.3	4
125	A Glutathione <i>S</i> -Transferase Catalyzes the Dehalogenation of Inhibitory Metabolites of Polychlorinated Biphenyls. Journal of Bacteriology, 2006, 188, 4424-4430.	2.2	32
126	Transcriptomic Assessment of Isozymes in the Biphenyl Pathway of <i>Rhodococcus</i> sp. Strain RHA1. Applied and Environmental Microbiology, 2006, 72, 6183-6193.	3.1	83

#	Article	IF	CITATIONS
127	Kinetic and Structural Insight into the Mechanism of BphD, a Câ^'C Bond Hydrolase from the Biphenyl Degradation Pathway. Biochemistry, 2006, 45, 11071-11086.	2.5	41
128	Structures of Ternary Complexes of BphK, a Bacterial Glutathione S-Transferase That Reductively Dechlorinates Polychlorinated Biphenyl Metabolites. Journal of Biological Chemistry, 2006, 281, 30933-30940.	3.4	23
129	Steady-state kinetics and inhibition of anaerobically purified human homogentisate 1,2-dioxygenase. Biochemical Journal, 2005, 386, 305-314.	3.7	22
130	Directed Evolution of a Ring-cleaving Dioxygenase for Polychlorinated Biphenyl Degradation. Journal of Biological Chemistry, 2005, 280, 42307-42314.	3.4	21
131	Phenylacetate Catabolism in Rhodococcus sp. Strain RHA1: a Central Pathway for Degradation of Aromatic Compounds. Journal of Bacteriology, 2005, 187, 4497-4504.	2.2	102
132	Catabolism of Benzoate and Phthalate in Rhodococcus sp. Strain RHA1: Redundancies and Convergence. Journal of Bacteriology, 2005, 187, 4050-4063.	2.2	140
133	Evolutionarily Divergent Extradiol Dioxygenases Possess Higher Specificities for Polychlorinated Biphenyl Metabolites. Journal of Bacteriology, 2005, 187, 415-421.	2.2	26
134	Growth Substrate- and Phase-Specific Expression of Biphenyl, Benzoate, and C ₁ Metabolic Pathways in <i>Burkholderia xenovorans</i> LB400. Journal of Bacteriology, 2005, 187, 7996-8005.	2.2	94
135	Spectroscopic Studies of the Anaerobic Enzymeâ^'Substrate Complex of Catechol 1,2-Dioxygenase. Journal of the American Chemical Society, 2005, 127, 16882-16891.	13.7	39
136	Crystal Structures of the Main Peptidase from the SARS Coronavirus Inhibited by a Substrate-like Aza-peptide Epoxide. Journal of Molecular Biology, 2005, 353, 1137-1151.	4.2	153
137	Molecular basis for the substrate selectivity of bicyclic and monocyclic extradiol dioxygenases. Biochemical and Biophysical Research Communications, 2005, 338, 215-222.	2.1	10
138	Functional Characterization of a Catabolic Plasmid from Polychlorinated- Biphenyl-Degrading Rhodococcus sp. Strain RHA1. Journal of Bacteriology, 2004, 186, 7783-7795.	2.2	65
139	High-Throughput Screening Identifies Inhibitors of the SARS Coronavirus Main Proteinase. Chemistry and Biology, 2004, 11, 1445-1453.	6.0	182
140	Ligand K-Edge X-ray Absorption Spectroscopy of [Fe4S4]1+,2+,3+ Clusters:  Changes in Bonding and Electronic Relaxation upon Redox. Journal of the American Chemical Society, 2004, 126, 8320-8328.	13.7	43
141	Ring-Cleavage Dioxygenases. , 2004, , 359-395.		23
142	Synthesis and Evaluation of Keto-Glutamine Analogues as Potent Inhibitors of Severe Acute Respiratory Syndrome 3CLproâ€. Journal of Medicinal Chemistry, 2004, 47, 6113-6116.	6.4	98
143	Spectroscopic and Electronic Structure Studies of 2,3-Dihydroxybiphenyl 1,2-Dioxygenase:Â O2Reactivity of the Non-Heme Ferrous Site in Extradiol Dioxygenases. Journal of the American Chemical Society, 2003, 125, 11214-11227.	13.7	58
144	Reduction Potentials of Rieske Clusters:Â Importance of the Coupling between Oxidation State and Histidine Protonation Stateâ€. Biochemistry, 2003, 42, 12400-12408.	2.5	135

#	Article	IF	CITATIONS
145	Characterization of Extradiol Dioxygenases from a Polychlorinated Biphenyl-Degrading Strain That Possess Higher Specificities for Chlorinated Metabolites. Journal of Bacteriology, 2003, 185, 1253-1260.	2.2	40
146	Characterization of Hybrid Toluate and Benzoate Dioxygenases. Journal of Bacteriology, 2003, 185, 5333-5341.	2.2	9
147	The Mechanism-based Inactivation of 2,3-Dihydroxybiphenyl 1,2-Dioxygenase by Catecholic Substrates. Journal of Biological Chemistry, 2002, 277, 2019-2027.	3.4	105
148	Reactivity of Toluate Dioxygenase with Substituted Benzoates and Dioxygen. Journal of Bacteriology, 2002, 184, 4096-4103.	2.2	15
149	Definitive Evidence for Monoanionic Binding of 2,3-Dihydroxybiphenyl to 2,3-Dihydroxybiphenyl 1,2-Dioxygenase from UV Resonance Raman Spectroscopy, UV/Vis Absorption Spectroscopy, and Crystallography. Journal of the American Chemical Society, 2002, 124, 2485-2496.	13.7	124
150	The power distribution advantage of fiber-optic coupled ultraviolet resonance Raman spectroscopy for bioanalytical and biomedical applications. Journal of Raman Spectroscopy, 2002, 33, 503-510.	2.5	26
151	Identification and analysis of a bottleneck in PCB biodegradation. Nature Structural Biology, 2002, 9, 934-939.	9.7	98
152	Characterization of BphF, a Rieske-Type Ferredoxin with a Low Reduction Potential. Biochemistry, 2001, 40, 84-92.	2.5	33
153	Comparative Specificities of Two Evolutionarily Divergent Hydrolases Involved in Microbial Degradation of Polychlorinated Biphenyls. Journal of Bacteriology, 2001, 183, 1511-1516.	2.2	51
154	A Cluster Exposed. Structure, 2000, 8, 1267-1278.	3.3	113
155	Steady-state Kinetic Characterization and Crystallization of a Polychlorinated Biphenyl-transforming Dioxygenase. Journal of Biological Chemistry, 2000, 275, 12430-12437.	3.4	62
156	Identification of a Serine Hydrolase as a Key Determinant in the Microbial Degradation of Polychlorinated Biphenyls. Journal of Biological Chemistry, 2000, 275, 15701-15708.	3.4	91
157	Experimental evidence for the role of buried polar groups in determining the reduction potential of metalloproteins: the S79P variant of Chromatium vinosum HiPIP. Journal of Biological Inorganic Chemistry, 1999, 4, 692-700.	2.6	16
158	Investigation of the role of a surface patch in the self-association of Chromatium vinosum high potential iron-sulfur protein. BBA - Proteins and Proteomics, 1999, 1433, 159-169.	2.1	9
159	In vitro evolution of horse heart myoglobin to increase peroxidase activity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12825-12831.	7.1	112
160	Crystal structure of cisâ€biphenylâ€2,3â€dihydrodiolâ€2,3â€dehydrogenase from a PCB degrader at 2.0 Ã resolution. Protein Science, 1998, 7, 1286-1293.	7.6	69
161	All in the family: Structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly. Protein Science, 1998, 7, 1661-1670.	7.6	93
162	Purification and Preliminary Characterization of a Serine Hydrolase Involved in the Microbial Degradation of Polychlorinated Biphenyls. Journal of Biological Chemistry, 1998, 273, 22943-22949.	3.4	64

#	Article	IF	CITATIONS
163	Molecular Basis for the Stabilization and Inhibition of 2,3-Dihydroxybiphenyl 1,2-Dioxygenase by t-Butanol. Journal of Biological Chemistry, 1998, 273, 34887-34895.	3.4	92
164	Degradation of Polychlorinated Biphenyl Metabolites by Naphthalene-Catabolizing Enzymes. Applied and Environmental Microbiology, 1998, 64, 4637-4642.	3.1	28
165	Role of the Heme Propionates in the Interaction of Heme with Apomyoglobin and Apocytochromeb5â€. Biochemistry, 1997, 36, 1010-1017.	2.5	86
166	Replacement of isoleucineâ€47 by threonine in the HPr protein of Streptococcus salivarius abrogates the preferential metabolism of glucose and fructose over lactose and melibiose but does not prevent the phosphorylation of HPr on serineâ€46. Molecular Microbiology, 1997, 25, 695-705.	2.5	28
167	Three-Dimensional Structure of the Reduced C77S Mutant of theChromatium vinosumHigh-Potential Ironâ^'Sulfur Protein through Nuclear Magnetic Resonance:Â Comparison with the Solution Structure of the Wild-Type Proteinâ€,‡. Biochemistry, 1996, 35, 5928-5936.	2.5	38
168	A Serine → Cysteine Ligand Mutation in the High Potential Ironâ ''Sulfur Protein fromChromatium vinosumProvides Insight into the Electronic Structure of the [4Feâ ''4S] Cluster. Journal of the American Chemical Society, 1996, 118, 75-80.	13.7	69
169	Evolutionary relationships among extradiol dioxygenases. Journal of Bacteriology, 1996, 178, 5930-5937.	2.2	290
170	The influence of a surface charge on the electronic and steric structure of a high potential iron-sulfur protein. Journal of Biological Inorganic Chemistry, 1996, 1, 257-263.	2.6	12
171	The Solution Structure Refinement of the Paramagnetic Reduced High-Potential Iron-Sulfur Protein I from Ectothiorhodospira Halophila by Using Stable Isotope Labeling and Nuclear Relaxation. FEBS Journal, 1996, 241, 440-452.	0.2	69
172	The Solution Structure of Oxidized HiPIP I from <i>Ectothiorhodospira halophila</i> ; Can NMR Spectroscopy Be Used to Probe Rearrangements Associated with Electron Transfer Processes?. Chemistry - A European Journal, 1995, 1, 598-607.	3.3	30
173	The role of a conserved tyrosine residue in highâ€potential iron sulfur proteins. Protein Science, 1995, 4, 2562-2572.	7.6	39
174	Sequence-Specific Assignment of Ligand Cysteine Protons of Oxidized, Recombinant HiPIP I from Ectothiorhodospira halophila. Inorganic Chemistry, 1995, 34, 2516-2523.	4.0	40
175	Tetrameric structure and cellular location of catechol 2,3-dioxygenase. Archives of Microbiology, 1995, 163, 65-69.	2.2	21
176	Crystal Structure of the Biphenyl-Cleaving Extradiol Dioxygenase from a PCB-Degrading Pseudomonad. Science, 1995, 270, 976-980.	12.6	348
177	Hyperexpression of a synthetic gene encoding a high potential iron sulfur protein. Protein Engineering, Design and Selection, 1994, 7, 1145-1150.	2.1	36
178	The three-dimensional structure in solution of the paramagnetic high-potential iron-sulfur protein I from Ectothiorhodospira halophila through nuclear magnetic resonance. FEBS Journal, 1994, 225, 715-725.	0.2	99
179	Analysis of the bimolecular reduction of ferricytochrome c by ferrocytochrome b5 through mutagenesis and molecular modelling. Biochimie, 1994, 76, 592-604.	2.6	51
180	Purification and characterization of cytochrome P450RR1 from Rhodococcus rhodochrous. FEBS Journal, 1993, 213, 211-216.	0.2	45

#	Article	IF	CITATIONS
181	Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene, 1993, 130, 47-55.	2.2	195
182	Effects of charged amino acid mutations on the bimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovine ferrocytochrome b5. Biochemistry, 1993, 32, 6613-6623.	2.5	162
183	Spectroscopic characterization of a newly isolated cytochrome P450 from Rhodococcus rhodochrous. Biophysical Journal, 1993, 65, 806-813.	0.5	16
184	Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene, 1993, 123, 17-24.	2.2	429
185	Reduction of horse heart ferricytochrome c by bovine liver ferrocytochrome b5. Experimental and theoretical analysis. Biochemistry, 1991, 30, 3663-3674.	2.5	73
186	The effects of pressure on porphyrin c-cytochrome b5 complex formation. Journal of the American Chemical Society, 1988, 110, 5909-5911.	13.7	21
187	Kinetics of flavin semiquinone reduction of the components of the cytochrome c-cytochrome b5 complex. Biochemistry, 1988, 27, 5455-5460.	2.5	15