Doug Johnstone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5637252/publications.pdf

Version: 2024-02-01

85 papers

4,877 citations

36 h-index 91884 69 g-index

86 all docs 86 docs citations

86 times ranked 2506 citing authors

#	Article	IF	CITATIONS
1	Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region. Astrophysical Journal, 2018, 869, 17.	4.5	337
2	Largeâ€Area Mapping at 850 Microns. II. Analysis of the Clump Distribution in the Ï•Ophiuchi Molecular Cloud. Astrophysical Journal, 2000, 545, 327-339.	4.5	301
3	The SCUBA Legacy Catalogues: Submillimeterâ€Continuum Objects Detected by SCUBA. Astrophysical Journal, Supplement Series, 2008, 175, 277-295.	7.7	300
4	JCMT/SCUBA Submillimeter Wavelength Imaging of the Integral-shaped Filament in Orion. Astrophysical Journal, 1999, 510, L49-L53.	4.5	248
5	YOUNG STELLAR OBJECTS IN THE GOULD BELT. Astrophysical Journal, Supplement Series, 2015, 220, 11.	7.7	232
6	The COMPLETE Survey of Star-Forming Regions: Phase I Data. Astronomical Journal, 2006, 131, 2921-2933.	4.7	227
7	The Large―and Smallâ€5cale Structures of Dust in the Starâ€forming Perseus Molecular Cloud. Astrophysical Journal, 2006, 646, 1009-1023.	4.5	180
8	Large Area Mapping at 850 Microns. III. Analysis of the Clump Distribution in the Orion B Molecular Cloud. Astrophysical Journal, 2001, 559, 307-317.	4.5	164
9	Externally Illuminated Young Stellar Environments in the Orion Nebula: [ITAL]Hubble[/ITAL] [ITAL]Telescope[/ITAL] Planetary Camera and Ultraviolet Observations. Astronomical Journal, 1998, 116, 293-321.	4.7	162
10	An Extinction Threshold for Protostellar Cores in Ophiuchus. Astrophysical Journal, 2004, 611, L45-L48.	4.5	153
11	Compact Disks in a High-resolution ALMA Survey of Dust Structures in the Taurus Molecular Cloud. Astrophysical Journal, 2019, 882, 49.	4.5	139
12	Viscous Diffusion and Photoevaporation of Stellar Disks. Astrophysical Journal, 2003, 582, 893-904.	4.5	120
13	Current Star Formation in the Ophiuchus and Perseus Molecular Clouds: Constraints and Comparisons from Unbiased Submillimeter and Midâ€Infrared Surveys. II Astrophysical Journal, 2008, 683, 822-843.	4.5	120
14	Current Star Formation in the Perseus Molecular Cloud: Constraints from Unbiased Submillimeter and Midâ€Infrared Surveys. Astrophysical Journal, 2007, 656, 293-305.	4.5	103
15	The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament. Astrophysical Journal, 2017, 846, 122.	4.5	103
16	The newborn planet population emerging from ring-like structures in discs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 453-461.	4.4	102
17	ALMA OBSERVATIONS OF THE ORION PROPLYDS. Astrophysical Journal, 2014, 784, 82.	4.5	96
18	The ice composition in the disk around V883 Ori revealed by its stellar outburst. Nature Astronomy, 2019, 3, 314-319.	10.1	87

#	Article	IF	CITATIONS
19	ASPECT RATIO DEPENDENCE OF THE FREE-FALL TIME FOR NON-SPHERICAL SYMMETRIES. Astrophysical Journal, 2012, 756, 145.	4.5	81
20	CONTINUUM VARIABILITY OF DEEPLY EMBEDDED PROTOSTARS AS A PROBE OF ENVELOPE STRUCTURE. Astrophysical Journal, 2013, 765, 133.	4.5	79
21	First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt. Astrophysical Journal, 2017, 842, 66.	4.5	79
22	A Submillimeter Dust and Gas Study of the Orion B Molecular Cloud. Astrophysical Journal, 2001, 556, 215-229.	4.5	69
23	Large Area Mapping at 850 μm. IV. Analysis of the Clump Distribution in the Orion B South Molecular Cloud. Astrophysical Journal, 2006, 639, 259-274.	4.5	62
24	Ring structure in the MWC 480 disk revealed by ALMA. Astronomy and Astrophysics, 2019, 622, A75.	5.1	55
25	Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements. Astrophysical Journal, 2018, 861, 65.	4.5	51
26	An Initial Overview of the Extent and Structure of Recent Star Formation within the Serpens Molecular Cloud Using Gaia Data Release 2. Astrophysical Journal, 2019, 878, 111.	4.5	47
27	A First Look at BISTRO Observations of the ϕOph-A core. Astrophysical Journal, 2018, 859, 4.	4.5	46
28	ALMA OBSERVATIONS OF A MISALIGNED BINARY PROTOPLANETARY DISK SYSTEM IN ORION. Astrophysical Journal, 2014, 796, 120.	4. 5	44
29	The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1996-2020.	4.4	42
30	How Do Stars Gain Their Mass? A JCMT/SCUBA-2 Transient Survey of Protostars in Nearby Star-forming Regions. Astrophysical Journal, 2017, 849, 43.	4. 5	42
31	JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146. Astrophysical Journal, 2019, 876, 42.	4.5	42
32	Quantifying Variability of Young Stellar Objects in the Mid-infrared Over 6 Years with the Near-Earth Object Wide-field Infrared Survey Explorer. Astrophysical Journal, 2021, 920, 132.	4. 5	41
33	THE DYNAMICS OF DENSE CORES IN THE PERSEUS MOLECULAR CLOUD. II. THE RELATIONSHIP BETWEEN DENSE CORES AND THE CLOUD. Astrophysical Journal, 2010, 723, 457-475.	4.5	40
34	The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333. Astrophysical Journal, 2020, 899, 28.	4. 5	39
35	The JCMT Transient Survey: Stochastic and Secular Variability of Protostars and Disks In the Submillimeter Region Observed over 18 Months. Astrophysical Journal, 2018, 854, 31.	4.5	38
36	The JCMT BISTRO Survey: The Magnetic Field in the Starless Core <i>i×i×/i> Ophiuchus C. Astrophysical Journal, 2019, 877, 43.</i>	4.5	38

#	Article	IF	CITATIONS
37	Magnetic Fields in the Infrared Dark Cloud G34.43+0.24. Astrophysical Journal, 2019, 883, 95.	4.5	38
38	The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region. Astrophysical Journal, 2019, 877, 88.	4.5	37
39	The JCMT Transient Survey: Detection of Submillimeter Variability in a Class I Protostar EC 53 in Serpens Main. Astrophysical Journal, 2017, 849, 69.	4.5	36
40	Multiple Outflows and Protostars near IC 348 and the Flying Ghost Nebula. Astronomical Journal, 2006, 132, 467-477.	4.7	32
41	Dual-wavelength ALMA Observations of Dust Rings in Protoplanetary Disks. Astrophysical Journal, 2020, 898, 36.	4.5	30
42	JCMT POL-2 and BISTRO Survey Observations of Magnetic Fields in the L1689 Molecular Cloud. Astrophysical Journal, 2021, 907, 88.	4.5	29
43	The JCMT Transient Survey: Data Reduction and Calibration Methods. Astrophysical Journal, 2017, 843, 55.	4.5	27
44	On the Accuracy of the ALMA Flux Calibration in the Time Domain and across Spectral Windows. Astronomical Journal, 2020, 160, 270.	4.7	23
45	The relationship between mid-infrared and sub-millimetre variability of deeply embedded protostars. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3614-3635.	4.4	22
46	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). II. Survey Overview: A First Look at 1.3 mm Continuum Maps and Molecular Outflows. Astrophysical Journal, Supplement Series, 2020, 251, 20.	7.7	22
47	The JCMT Transient Survey: Four-year Summary of Monitoring the Submillimeter Variability of Protostars. Astrophysical Journal, 2021, 920, 119.	4.5	22
48	Mid-J CO observations of Perseus B1-East 5: evidence for turbulent dissipation via low-velocity shocks. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1508-1520.	4.4	21
49	The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry. Astrophysical Journal Letters, 2021, 912, L27.	8.3	21
50	Young Faithful: The Eruptions of EC 53 as It Cycles through Filling and Draining the Inner Disk. Astrophysical Journal, 2020, 903, 5.	4.5	21
51	FAUST. II. Discovery of a Secondary Outflow in IRAS 15398â~3359: Variability in Outflow Direction during the Earliest Stage of Star Formation?. Astrophysical Journal, 2021, 910, 11.	4.5	19
52	The JCMT BISTRO Survey: The Distribution of Magnetic Field Strengths toward the OMC-1 Region. Astrophysical Journal, 2021, 913, 85.	4.5	19
53	The JCMT Transient Survey: Identifying Submillimeter Continuum Variability over Several Year Timescales Using Archival JCMT Gould Belt Survey Observations. Astrophysical Journal, 2017, 849, 107.	4.5	18
54	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). I. Detection of New Hot Corinos with the ACA. Astrophysical Journal, 2020, 898, 107.	4.5	18

#	Article	IF	CITATIONS
55	The JCMT BISTRO Survey: Alignment between Outflows and Magnetic Fields in Dense Cores/Clumps. Astrophysical Journal, 2021, 907, 33.	4.5	17
56	Radiative Transfer Modeling of EC 53: An Episodically Accreting Class I Young Stellar Object. Astrophysical Journal, 2020, 895, 27.	4.5	17
57	Observational signatures of outbursting protostars $\hat{a}\in$ II. Exploring a wide range of eruptive protostars. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4465-4472.	4.4	16
58	The JCMT Transient Survey: An Extraordinary Submillimeter Flare in the T Tauri Binary System JW 566. Astrophysical Journal, 2019, 871, 72.	4.5	16
59	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Detection of Extremely High-density Compact Structure of Prestellar Cores and Multiple Substructures Within. Astrophysical Journal Letters, 2021, 907, L15.	8.3	16
60	Observations of Magnetic Fields Surrounding LkHÎ \pm 101 Taken by the BISTRO Survey with JCMT-POL-2. Astrophysical Journal, 2021, 908, 10.	4.5	16
61	B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main. Astrophysical Journal, 2022, 926, 163.	4.5	16
62	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): A Hot Corino Survey toward Protostellar Cores in the Orion Cloud. Astrophysical Journal, 2022, 927, 218.	4.5	16
63	The origin of ionized filaments within the Orion–Eridanus superbubble. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1095-1104.	4.4	14
64	ALMA OBSERVATIONS OF THE LARGEST PROTO-PLANETARY DISK IN THE ORION NEBULA, 114–426: A CO SILHOUETTE. Astrophysical Journal, 2015, 808, 69.	4.5	14
65	Observational signatures of outbursting protostars - I: From hydrodynamic simulations to observations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5106-5117.	4.4	14
66	The Circumstellar Environment around the Embedded Protostar EC 53. Astrophysical Journal, 2020, 889, 20.	4.5	14
67	The JCMT BISTRO Survey: An 850/450 νm Polarization Study of NGC 2071IR in Orion B. Astrophysical Journal, 2021, 918, 85.	4.5	13
68	FILAMENTARY STAR FORMATION: OBSERVING THE EVOLUTION TOWARD FLATTENED ENVELOPES. Astrophysical Journal, 2012, 761, 171.	4.5	11
69	The JCMT Gould Belt Survey: SCUBA-2 Data Reduction Methods and Gaussian Source Recovery Analysis. Astrophysical Journal, Supplement Series, 2018, 238, 8.	7.7	11
70	Dissecting the Different Components of the Modest Accretion Bursts of the Very Young Protostar HOPS 373. Astrophysical Journal, 2022, 929, 60.	4.5	10
71	Two Rings and a Marginally Resolved, 5 au Disk around LkCa 15 Identified via Near-infrared Sparse Aperture Masking Interferometry. Astrophysical Journal, 2022, 931, 3.	4.5	10
72	Identifying Variability in Deeply Embedded Protostars with ALMA and CARMA. Astrophysical Journal, 2019, 871, 149.	4.5	9

#	Article	IF	CITATIONS
73	AGB Interlopers in YSO Catalogs Hunted out by NEOWISE. Astrophysical Journal Letters, 2021, 916, L20.	8.3	8
74	Steady Wind-blown Cavities within Infalling Rotating Envelopes: Application to the Broad Velocity Component in Young Protostars. Astrophysical Journal, 2020, 900, 15.	4.5	7
75	Misaligned Rotations of the Envelope, Outflow, and Disks in the Multiple Protostellar System of VLA 1623–2417: FAUST. III. Astrophysical Journal, 2022, 927, 54.	4.5	7
76	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Deriving Inclination Angle and Velocity of the Protostellar Jets from Their SiO Knots. Astrophysical Journal Letters, 2022, 931, L5.	8.3	7
77	The JCMT BISTRO-2 Survey: The Magnetic Field in the Center of the Rosette Molecular Cloud. Astrophysical Journal, 2021, 913, 57.	4.5	6
78	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Detection of a Dense SiO Jet in the Evolved Protostellar Phase. Astrophysical Journal, 2022, 925, 11.	4.5	6
79	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Evidence for a Molecular Jet Launched at an Unprecedented Early Phase of Protostellar Evolution. Astrophysical Journal, 2022, 931, 130.	4.5	6
80	Two-component Magnetic Field along the Line of Sight to the Perseus Molecular Cloud: Contribution of the Foreground Taurus Molecular Cloud. Astrophysical Journal, 2021, 914, 122.	4.5	5
81	The JCMT BISTRO Survey: Evidence for Pinched Magnetic Fields in Quiescent Filaments of NGC 1333. Astrophysical Journal Letters, 2021, 923, L9.	8.3	4
82	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): How Do Dense Core Properties Affect the Multiplicity of Protostars?. Astrophysical Journal, 2022, 931, 158.	4.5	4
83	ALMA Observations of Asymmetric Molecular Gas Emission from a Protoplanetary Disk in the Orion Nebula. Astronomical Journal, 2017, 153, 233.	4.7	3
84	Constraining How Star Formation Proceeds: Surveys in the Sub-mm and FIR. Proceedings of the International Astronomical Union, 2009, 5, 406-407.	0.0	0
85	Submillimeter Continuum Variability in Planck Galactic Cold Clumps. Astrophysical Journal, Supplement Series, 2019, 242, 27.	7.7	O