Abdullah Menzek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/563668/publications.pdf

Version: 2024-02-01

		394421	330143
57	1,482	19	37
papers	citations	h-index	g-index
58	58	58	960
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis and Carbonic Anhydrase Isoenzymes I, II, IX, and XII Inhibitory Effects of Dimethoxybromophenol Derivatives Incorporating Cyclopropane Moieties. Journal of Medicinal Chemistry, 2015, 58, 640-650.	6.4	187
2	The first synthesis, carbonic anhydrase inhibition and anticholinergic activities of some bromophenol derivatives with S including natural products. Bioorganic Chemistry, 2019, 85, 128-139.	4.1	127
3	The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Bioorganic Chemistry, 2017, 72, 359-366.	4.1	118
4	Synthesis and Antioxidant Properties of (3,4â€Dihydroxyphenyl)(2,3,4â€ŧrihydroxyphenyl)methanone and Its Derivatives. Archiv Der Pharmazie, 2012, 345, 323-334.	4.1	99
5	Synthesis and biological evaluation of bromophenol derivatives with cyclopropyl moiety: Ring opening of cyclopropane with monoester. Bioorganic Chemistry, 2019, 89, 103017.	4.1	77
6	Synthesis and Carbonic Anhydrase Isoenzymes Inhibitory Effects of Brominated Diphenylmethanone and Its Derivatives. Archiv Der Pharmazie, 2014, 347, 354-359.	4.1	69
7	Synthesis and carbonic anhydrase inhibitory properties of novel bromophenols and their derivatives including natural products: Vidalol B. European Journal of Medicinal Chemistry, 2012, 54, 423-428.	5.5	58
8	Synthesis and antioxidant activities of phenol derivatives from 1,6-bis(dimethoxyphenyl)hexane-1,6-dione. Bioorganic Chemistry, 2020, 100, 103884.	4.1	56
9	Synthesis and paroxonase activities of novel bromophenols. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 1073-1079.	5.2	51
10	Synthesis of 4â€[2â€(3,4â€dimethoxybenzyl)cyclopentyl]â€1,2â€dimethoxybenzene Derivatives and Evaluations Their Carbonic Anhydrase Isoenzymes Inhibitory Effects. Chemical Biology and Drug Design, 2016, 87, 594-607.	s of 3.2	46
11	Synthesis and carbonic anhydrase inhibitory properties of novel cyclohexanonyl bromophenol derivatives. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1352-1357.	2.2	43
12	Synthesis and Biological Evaluation of Novel Bromophenol Derivatives as Carbonic Anhydrase Inhibitors. Archiv Der Pharmazie, 2013, 346, 447-454.	4.1	42
13	Inhibition of human carbonic anhydrase isozymes I, II and VI with a series of bisphenol, methoxy and bromophenol compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2012, 27, 467-475.	5.2	39
14	Total Synthesis of the Biologically Active, Naturally Occurring 3,4â€Dibromoâ€5â€[2â€bromoâ€3,4â€dihydroxyâ€6â€(methoxymethyl)benzyl]benzeneâ€1,2â€diol and Regios <i>O</i> â€Demethylation of Aryl Methyl Ethers. Helvetica Chimica Acta, 2010, 93, 1127-1135.	elective	33
15	Bromination of benzhomobarrelene derivatives: 10. High temperature bromination. Tetrahedron, 1997, 53, 14451-14462.	1.9	27
16	Sequential Rearrangements and Unusual Isomerization with KOtBu: Synthesis of anti-12-Vinyltricyclo[6.3.1.02,7]dodeca-2,4,6,9-tetraene and its Derivatives. Tetrahedron, 2000, 56, 8505-8512.	1.9	23
17	Synthesis of a New System Containing a Pyramidalized Double Bond: cis-Dicarbomethoxydihydroheptalene and Its Reaction with Benzyne. Journal of Organic Chemistry, 1995, 60, 829-832.	3.2	21
18	Cycloaddition reactions of substituted cycloheptatrienes with benzyne and quinones: an entry to the substituted benzhomobarrelenes. Tetrahedron, 1993, 49, 6071-6078.	1.9	19

#	Article	IF	Citations
19	Unusual bicyclic endoperoxides containing pyridazine ring: Reaction of unsaturated bicyclic endoperoxides with dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate. Tetrahedron Letters, 1996, 37, 921-924.	1.4	19
20	Syntheses of systems containing strained double bonds: cycloaddition reactions of trans-3,8-dicarbomethoxydihydroheptalene. Journal of Organic Chemistry, 1991, 56, 6755-6758.	3.2	18
21	Synthesis of the possible carcinogenic dihydrodiol and diol epoxide of phthalazine. Tetrahedron, 2005, 61, 1545-1550.	1.9	18
22	Thermolysis and CoTPP-catalyzed rearrangement of endoperoxides derived from 2.3-dihydro-1(2H)azulenone: A new endoperoxide-endoperoxide rearrangement. Tetrahedron Letters, 1987, 28, 1689-1692.	1.4	17
23	Reaction of 9-oxabicyclo [4.2.1]non-7-ene-1-ol with tetrazine: An unusually facile intramolecular rearrangement. Tetrahedron, 2017, 73, 5381-5388.	1.9	17
24	A new, safe and convenient procedure for reduction of naphthalene and anthracene: synthesis of tetralin in a one-pot reaction. Journal of Chemical Research, 2003, 2003, 752-753.	1.3	16
25	Cycloaddition Reaction of 1,4â€Dihydronaphthalene 1,4â€Epoxide with Cyclooctatetraene: <i>Cope</i> Rearrangement in an Adduct. Helvetica Chimica Acta, 2008, 91, 2367-2378.	1.6	15
26	Synthesis of cyclopropane-annulated conduritol derivatives: norcaran-2,3,4,5-tetraoles. Tetrahedron, 2008, 64, 7289-7294.	1.9	15
27	Selective O-demethylation during bromination of (3,4-dimethoxyphenyl)(2,3,4-trimethoxyphenyl)methanone. Tetrahedron, 2011, 67, 3483-3489.	1.9	15
28	A New Approach to Understanding Oxidation-Reduction of Compounds in Organic Chemistry. Journal of Chemical Education, 2002, 79, 700.	2.3	14
29	Synthesis and photophysical properties of new pyrazolines with triphenyl and ester derivatives. Journal of Molecular Structure, 2020, 1214, 128213.	3.6	14
30	Pyramidalized Double Bonds Containing Endoperoxide Linkages:Â Photooxygenation of Dimethylcis-3,8-Dihydroheptalene-3,8-dicarboxylate. Journal of Organic Chemistry, 1999, 64, 6670-6676.	3.2	13
31	Reductions of Benzene Derivatives Whose Benzylic Positions Bear Oxygen Atoms under Mild Conditions. Helvetica Chimica Acta, 2008, 91, 2299-2307.	1.6	13
32	Cycloaddition reaction of spiro [2.4] hepta-4,6-dien-1-ylmethanol and PTAD: a new rearrangement. Tetrahedron, 2016, 72, 2587-2592.	1.9	12
33	Synthesis and rearrangement reactions of 1,4-dihydrospiro[1,4-methanonaphthalene-9,1′-cyclopropane] derivatives. Tetrahedron, 2018, 74, 5839-5849.	1.9	11
34	Sequential Rearrangement Reactions of Benzhomonorbornadiene Derivatives: Synthesis of 7-Vinylbenzonorbornadiene. Helvetica Chimica Acta, 2003, 86, 324-329.	1.6	10
35	Synthesis of Cycloheptane-1,2,3,4-tetraols as Cyclitol Mimetics. Journal of Chemical Research, 2005, 2005, 382-384.	1.3	10
36	Reactions of 3,10-epoxycyclo[10.2.2.02,11.04,9]hexadeca-4,6,8,13-tetraene: a new intramolecular 1,5-oxygen migration. Tetrahedron, 2006, 62, 12318-12325.	1.9	10

#	Article	IF	CITATIONS
37	Synthesis of new homoconduritols and homoaminoconduritols. Tetrahedron, 2016, 72, 2828-2837.	1.9	10
38	Synthesis and Rearrangement Reactions of Dihydrobenzhomobarrelene Derivatives: Influence of Double Bond on Product Distribution. Journal of Chemical Research, 2002, 2002, 475-476.	1.3	9
39	Synthesis of cyclohexane derivatives including Br, Cl, N, O, and S at 1,2,4,5-positions: selectivity in addition reactions. Tetrahedron, 2014, 70, 83-91.	1.9	7
40	The first synthesis of phenylpropanoid derivative bromophenols including natural products: Formation of an indene derivative compound. Tetrahedron, 2020, 76, 131016.	1.9	7
41	Synthesis and structure of new systems containing pyramidalized double bonds. Journal of Chemical Crystallography, 1995, 25, 107-116.	1.1	6
42	Cycloaddition Reactions of 1,4-Dihydronaphthalene-1,4-epoxide with Cyclohexadiene and 7-(Methoxycarbonyl)cycloheptatriene: Selectivity in Additions. European Journal of Organic Chemistry, 2004, 2004, $1143-1148$.	2.4	6
43	Synthesis of New Anthraquinone and Naphthohomobarrelene Derivatives. Journal of Chemical Research, 2004, 2004, 210-212.	1.3	5
44	Photooxygenation of 5- and 6-chloro-1,3-cycloheptadienes and Reactions of their Endoperoxides with Base: Effects of the Chloro Substituent on the Reactions. Journal of Chemical Research, 2005, 2005, 209-214.	1.3	5
45	Cycloaddition Reactions of Benzonorbornadiene and Homonorbornadiene: New Isoxazoline and Pyridazine Derivatives. Journal of Heterocyclic Chemistry, 2018, 55, 1917-1925.	2.6	5
46	Monodisperse NiPd alloy nanoparticles decorated on mesoporous graphitic carbon nitride as a catalyst for the highly efficient chemoselective reduction of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketone compounds. New Journal of Chemistry, 2020, 44, 13606-13612.	2.8	5
47	Synthesis and some enzyme inhibition effects of isoxazoline and pyrazoline derivatives including benzonorbornene unit. Journal of Biochemical and Molecular Toxicology, 2022, 36, e22952.	3.0	5
48	1, <scp>3â€dipolar</scp> cycloaddition reactions of the compound obtaining from <scp>cyclopentadieneâ€PTAD</scp> and biological activities of adducts formed selectively. Journal of Heterocyclic Chemistry, 2022, 59, 864-878.	2.6	5
49	12-Bromo-1,2,3,4-tetrahydro-1,4-ethanoanthracen-11-ol. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o1869-o1871.	0.2	3
50	Aromatisation in Adducts of α-Terpinene: Influence of Hindered Internal Rotations. Journal of Chemical Research, 2011, 35, 540-544.	1.3	3
51	Chemoselective reduction of $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl compounds in the presence of CuPd alloy nanoparticles decorated on mesoporous graphitic carbon nitride as highly efficient catalyst. Journal of Organometallic Chemistry, 2022, 958, 122181.	1.8	3
52	1S(R),2S(R),3S(R),10S(R),12R(S),13R(S),14R(S),17S(R)-13-Bromo-11-oxapentacyclo[8.7.0.02,14.04,9.012,17] Acta Crystallographica Section E: Structure Reports Online, 2002, 58, o1234-o1236.	heptadeca	-4,6 ₂ 8-trien-3-c
53	(1SR,2SR,3SR,10SR,12RS,13RS,14RS,17SR)-13-Hydroxy-11-oxapentacyclo[8.7.0.02,14.04,9.012,17]heptadeca 4-chlorobenzoate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o3859-o3861.	-4,6,8-trier 0.2	1-3- <u>y</u> l
54	2,3-Dibromo-1-[4-(2,3-dibromo-4,5-dimethoxybenzyl)-2,5-dimethoxybenzyl]-4,5-dimethoxybenzene. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3029-o3029.	0.2	1

#	Article	IF	CITATIONS
55	Synthesis and Aldose Reductase Inhibition Effects of Novel <i>N</i> â€Benzylâ€4â€Methoxyaniline Derivatives. Chemistry and Biodiversity, 2022, 19, .	2.1	1
56	exo-(1RS,8SR,9RS,11SR)-10-Chloromethyltetracyclo[6.3.2.02,709,11]undecane-2,4,6,12-tetraene. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, 0350-0352.	0.2	0
57	(1RS,2RS,3SR,5RS,7RS)-2,5-Dichloro-8-oxabicyclo[5.1.0]octan-3-ol. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1145-o1145.	0.2	0