Mayra Furlan-Magaril

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5636395/publications.pdf

Version: 2024-02-01

394421 580821 2,771 26 19 25 g-index citations h-index papers 33 33 33 5190 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	The global and promoter-centric 3D genome organization temporally resolved during a circadian cycle. Genome Biology, 2021, 22, 162.	8.8	21
2	In-Nucleus Hi-C in Drosophila Cells. Journal of Visualized Experiments, 2021, , .	0.3	0
3	Heterochromatin as an Important Driver of Genome Organization. Frontiers in Cell and Developmental Biology, 2020, 8, 579137.	3.7	48
4	In situ dissection of domain boundaries affect genome topology and gene transcription in Drosophila. Nature Communications, 2020, 11, 894.	12.8	31
5	RNA proximity sequencing reveals the spatial organization of the transcriptome in the nucleus. Nature Biotechnology, 2019, 37, 793-802.	17.5	30
6	RNA Interactions Are Essential for CTCF-Mediated Genome Organization. Molecular Cell, 2019, 76, 412-422.e5.	9.7	183
7	Long-Range Enhancer Interactions Are Prevalent in Mouse Embryonic Stem Cells and Are Reorganized upon Pluripotent State Transition. Cell Reports, 2018, 22, 2615-2627.	6.4	99
8	Shaping Up the Embryo: The Role of Genome 3D Organization. Methods in Molecular Biology, 2018, 1752, 157-175.	0.9	0
9	Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions. Journal of Visualized Experiments, 2018, , .	0.3	66
10	Lineage-specific dynamic and pre-established enhancer–promoter contacts cooperate in terminal differentiation. Nature Genetics, 2017, 49, 1522-1528.	21.4	255
11	Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells. ELife, 2017, 6, .	6.0	130
12	HiCUP: pipeline for mapping and processing Hi-C data. F1000Research, 2015, 4, 1310.	1.6	485
13	Global Reorganization of the Nuclear Landscape in Senescent Cells. Cell Reports, 2015, 10, 471-483.	6.4	282
14	3D genome architecture from populations to single cells. Current Opinion in Genetics and Development, 2015, 31, 36-41.	3.3	27
15	The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Research, 2015, 25, 582-597.	5 . 5	402
16	Individual and Sequential Chromatin Immunoprecipitation Protocols. Methods in Molecular Biology, 2015, 1334, 205-218.	0.9	3
17	Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nature Genetics, 2015, 47, 1179-1186.	21.4	330
18	The Kr $\tilde{A}^{1}\!\!/\!4$ ppel-like factor 4 controls biosynthesis of thyrotropin-releasing hormone during hypothalamus development. Molecular and Cellular Endocrinology, 2011, 333, 127-133.	3.2	17

#	Article	IF	CITATIONS
19	Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nature Structural and Molecular Biology, 2011, 18, 708-714.	8.2	95
20	Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter. BMC Cancer, 2011, 11, 232.	2.6	32
21	An insulator embedded in the chicken α-globin locus regulates chromatin domain configuration and differential gene expression. Nucleic Acids Research, 2011, 39, 89-103.	14.5	29
22	Sox9 Represses α-Sarcoglycan Gene Expression in Early Myogenic Differentiation. Journal of Molecular Biology, 2009, 394, 1-14.	4.2	18
23	Sequential Chromatin Immunoprecipitation Protocol: ChIP-reChIP. Methods in Molecular Biology, 2009, 543, 253-266.	0.9	86
24	Protection against telomeric position effects by the chicken cHS4 beta-globin insulator. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14044-14049.	7.1	34
25	Globin genes transcriptional switching, chromatin structure and linked lessons to epigenetics in cancer: A comparative overview. Comparative Biochemistry and Physiology Part A, Molecular & Comparative Integrative Physiology, 2007, 147, 750-760.	1.8	8
26	Neural stem cells in development and regenerative medicine. Archives of Medical Research, 2003, 34, 572-588.	3.3	43