
Fernando Jaramillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5635084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and Society, 2017, 22, .	2.3	576
2	Hydroclimatic shifts driven by human water use for food and energy production. Nature Climate Change, 2013, 3, 213-217.	18.8	233
3	Local flow regulation and irrigation raise global human water consumption and footprint. Science, 2015, 350, 1248-1251.	12.6	233
4	Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, 2017, 108, 489-497.	3.6	217
5	Ozone pollution will compromise efforts to increase global wheat production. Global Change Biology, 2018, 24, 3560-3574.	9.5	163
6	Comment on "Planetary boundaries: Guiding human development on a changing planet― Science, 2015, 348, 1217-1217.	12.6	108
7	The Water Planetary Boundary: Interrogation and Revision. One Earth, 2020, 2, 223-234.	6.8	98
8	A planetary boundary for green water. Nature Reviews Earth & Environment, 2022, 3, 380-392.	29.7	95
9	Developing water change spectra and distinguishing change drivers worldwide. Geophysical Research Letters, 2014, 41, 8377-8386.	4.0	94
10	Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resources Research, 2020, 56, e2019WR024957.	4.2	86
11	Priorities and Interactions of Sustainable Development Goals (SDGs) with Focus on Wetlands. Water (Switzerland), 2019, 11, 619.	2.7	75
12	Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space. Hydrology and Earth System Sciences, 2018, 22, 567-580.	4.9	65
13	Integrating the Water Planetary Boundary With Water Management From Local to Global Scales. Earth's Future, 2020, 8, e2019EF001377.	6.3	65
14	Exploring hydroclimatic change disparity via the Budyko framework. Hydrological Processes, 2014, 28, 4110-4118.	2.6	63
15	Hydroclimatic changes and drivers in the Sava River Catchment and comparison with Swedish catchments. Ambio, 2015, 44, 624-634.	5.5	59
16	A social–ecological analysis of ecosystem services in two different farming systems. Ambio, 2015, 44, 102-112.	5.5	53
17	Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. Journal of Hydrology, 2015, 529, 134-145.	5.4	52
18	Multimethod assessment of evapotranspiration shifts due to non-irrigated agricultural development in Sweden, Journal of Hydrology, 2013, 484, 55-62.	5.4	49

Fernando Jaramillo

#	Article	IF	CITATIONS
19	Implications of freshwater flux data from the <scp>CMIP5</scp> multimodel output across a set of Northern Hemisphere drainage basins. Earth's Future, 2015, 3, 206-217.	6.3	46
20	Interacting effects of change in climate, human population, land use, and water use on biodiversity and ecosystem services. Ecology and Society, 2015, 20, .	2.3	43
21	Ecohydrological disturbances associated with roads: Current knowledge, research needs, and management concerns with reference to the tropics. Ecohydrology, 2018, 11, e1881.	2.4	42
22	Dissecting the ecosystem service of large-scale pollutant retention: The role of wetlands and other landscape features. Ambio, 2015, 44, 127-137.	5.5	40
23	Assessment of hydrologic connectivity in an ungauged wetland with InSAR observations. Environmental Research Letters, 2018, 13, 024003.	5.2	40
24	Effects of Hydroclimatic Change and Rehabilitation Activities on Salinity and Mangroves in the Ciénaga Grande de Santa Marta, Colombia. Wetlands, 2018, 38, 755-767.	1.5	34
25	Estimating the global potential of water harvesting from successful case studies. Global Environmental Change, 2020, 63, 102121.	7.8	33
26	Water use by Swedish boreal forests in a changing climate. Functional Ecology, 2016, 30, 690-699.	3.6	31
27	Future Hydroclimatic Impacts on Africa: Beyond the Paris Agreement. Earth's Future, 2019, 7, 748-761.	6.3	21
28	Barriers to scaling sustainable land and water management in Uganda: a cross-scale archetype approach. Ecology and Society, 2021, 26, .	2.3	17
29	Succeeding at home and abroad: accounting for the international spillovers of cities' SDG actions. Npj Urban Sustainability, 2021, 1, .	8.0	17
30	Assessing the Role of a Limestone Quarry as Sediment Source in a Developing Tropical Catchment. Land Degradation and Development, 2016, 27, 1064-1074.	3.9	16
31	Analysis of Floodplain Dynamics in the Atrato River Colombia Using SAR Interferometry. Water (Switzerland), 2019, 11, 875.	2.7	15
32	Wetland Biomass and Productivity in Coastal Louisiana: Base Line Data (1976–2015) and Knowledge Gaps for the Development of Spatially Explicit Models for Ecosystem Restoration and Rehabilitation Initiatives. Water (Switzerland), 2019, 11, 2054.	2.7	13
33	A call for consistency with the terms â€~wetter' and â€~drier' in climate change studies. Environmental Evidence, 2021, 10, .	2.7	12
34	Exploring the influence of reservoir impoundment on surrounding tree growth. Advances in Water Resources, 2021, 153, 103946.	3.8	12
35	Data for wetlandscapes and their changes around the world. Earth System Science Data, 2020, 12, 1083-1100.	9.9	12
36	An Earth system law perspective on governing social-hydrological systems in the Anthropocene. Earth System Governance, 2021, 10, 100120.	3.4	11

Fernando Jaramillo

#	Article	IF	CITATIONS
37	Using <scp>InSAR</scp> to identify hydrological connectivity and barriers in a highly fragmented wetland. Hydrological Processes, 2020, 34, 4417-4430.	2.6	10
38	Multi-Sensor InSAR Assessment of Ground Deformations around Lake Mead and Its Relation to Water Level Changes. Remote Sensing, 2021, 13, 406.	4.0	10
39	Hydro-climatic changes of wetlandscapes across the world. Scientific Reports, 2021, 11, 2754.	3.3	10
40	Radial Growth Responses to Climate of Pinus yunnanensis at Low Elevations of the Hengduan Mountains, China. Forests, 2020, 11, 1066.	2.1	9
41	Future Climate Change Renders Unsuitable Conditions for Paramo Ecosystems in Colombia. Sustainability, 2020, 12, 8373.	3.2	9
42	Hydroclimatic Effects of a Hydropower Reservoir in a Tropical Hydrological Basin. Sustainability, 2020, 12, 6795.	3.2	7
43	Scaling relations reveal global and regional differences in morphometry of reservoirs and natural lakes. Science of the Total Environment, 2022, 822, 153510.	8.0	7
44	Water footprint and consumption of hydropower from basin-constrained water mass balance. Advances in Water Resources, 2021, 153, 103947.	3.8	6
45	Hydro-climatic controls explain variations in catchment-scale nitrogen use efficiency. Environmental Research Letters, 2020, 15, 094006.	5.2	5
46	Drivers and extent of surface water occurrence in the Selenga River Delta, Russia. Journal of Hydrology: Regional Studies, 2021, 38, 100945.	2.4	5
47	Retrieval of Simultaneous Water‣evel Changes in Small Lakes With InSAR. Geophysical Research Letters, 2022, 49, .	4.0	4
48	A probabilistic conceptual model to attribute runoff variations to human activity. Hydrological Sciences Journal, 2021, 66, 309-321.	2.6	3
49	Investing in sustainable intensification for smallholders: quantifying large-scale costs and benefits in Uganda. Environmental Research Letters, 2022, 17, 045010.	5.2	3
50	Why monitor carbon in highâ€alpine streams?. Geografiska Annaler, Series A: Physical Geography, 2016, 98, 237-245.	1.5	2
51	Nordic hydrological frontier in the 21st century. Hydrology Research, 2022, 53, 700-715.	2.7	2

4