Robert E Gerszten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5634497/publications.pdf

Version: 2024-02-01

145 papers 17,629 citations

56 h-index 125 g-index

151 all docs

151 docs citations

151 times ranked

28185 citing authors

#	Article	IF	CITATIONS
1	Regular exercise and patterns of response across multiple cardiometabolic traits: the HERITAGE family study. British Journal of Sports Medicine, 2022, 56, 95-100.	6.7	8
2	ADAMTSL2 protein and a soluble biomarker signature identify at-risk non-alcoholic steatohepatitis and fibrosis in adults with NAFLD. Journal of Hepatology, 2022, 76, 25-33.	3.7	34
3	Whole Genome Sequence Analysis of the Plasma Proteome in Black Adults Provides Novel Insights Into Cardiovascular Disease. Circulation, 2022, 145, 357-370.	1.6	39
4	Metabo-Endotypes of Asthma Reveal Differences in Lung Function: Discovery and Validation in Two TOPMed Cohorts. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 288-299.	5 . 6	17
5	Metabolomic Analysis of Coronary Heart Disease in an African American Cohort From the Jackson Heart Study. JAMA Cardiology, 2022, 7, 184.	6.1	19
6	Bromodomain Inhibition Reveals FGF15/19 As a Target of Epigenetic Regulation and Metabolic Control. Diabetes, 2022, 71, 1023-1033.	0.6	3
7	Protein prediction for trait mapping in diverse populations. PLoS ONE, 2022, 17, e0264341.	2.5	13
8	Exerkines in health, resilience and disease. Nature Reviews Endocrinology, 2022, 18, 273-289.	9.6	268
9	Glyoxylate protects against cyanide toxicity through metabolic modulation. Scientific Reports, 2022, 12, 4982.	3.3	4
10	Nucleosides Associated With Incident Ischemic Stroke in the REGARDS and JHS Cohorts. Neurology, 2022, 98, .	1.1	10
11	Lymphocyte activation gene-3-associated protein networks are associated with HDL-cholesterol and mortality in the Trans-omics for Precision Medicine program. Communications Biology, 2022, 5, 362.	4.4	5
12	Stability and reproducibility of proteomic profiles in epidemiological studies: comparing the Olink and SOMAscan platforms. Proteomics, 2022, 22, .	2.2	32
13	0030 Development and Validation of a Metabolomic Risk Score for Obstructive Sleep Apnea across Race/Ethnicities. Sleep, 2022, 45, A13-A14.	1.1	0
14	Genetic Architecture of Plasma Alphaâ€Aminoadipic Acid Reveals a Relationship With Highâ€Density Lipoprotein Cholesterol. Journal of the American Heart Association, 2022, 11, .	3.7	6
15	Proteomics endotyping of infants with severe bronchiolitis and risk of childhood asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3350-3361.	5 . 7	13
16	Proteomics and Population Biology in the Cardiovascular Health Study (CHS): design of a study with mentored access and active data sharing. European Journal of Epidemiology, 2022, 37, 755-765.	5.7	6
17	Proteomic Signatures of Lifestyle Risk Factors for Cardiovascular Disease: A Crossâ€Sectional Analysis of the Plasma Proteome in the Framingham Heart Study. Journal of the American Heart Association, 2021, 10, e018020.	3.7	14
18	Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature, 2021, 590, 290-299.	27.8	1,069

#	Article	IF	CITATIONS
19	Metabolomic Markers of Southern Dietary Patterns in the Jackson Heart Study. Molecular Nutrition and Food Research, 2021, 65, 2000796.	3.3	4
20	Hepatic Fat in Participants With and Without Incident Diabetes in the Diabetes Prevention Program Outcome Study. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4746-e4765.	3.6	4
21	Proteomic profiling reveals biomarkers and pathways in type 2 diabetes risk. JCI Insight, 2021, 6, .	5.0	26
22	MTORC1-Regulated Metabolism Controlled by TSC2 Limits Cardiac Reperfusion Injury. Circulation Research, 2021, 128, 639-651.	4.5	28
23	Multiomic Profiling in Black and White Populations Reveals Novel Candidate Pathways in Left Ventricular Hypertrophy and Incident Heart Failure Specific to Black Adults. Circulation Genomic and Precision Medicine, 2021, 14, e003191.	3.6	7
24	Metabolomic profiling identifies complex lipid species and amino acid analogues associated with response to weight loss interventions. PLoS ONE, 2021, 16, e0240764.	2.5	9
25	Human plasma proteomic profiles indicative of cardiorespiratory fitness. Nature Metabolism, 2021, 3, 786-797.	11.9	36
26	Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Reports Medicine, 2021, 2, 100287.	6.5	183
27	Correlates of Neutralization against SARS-CoV-2 Variants of Concern by Early Pandemic Sera. Journal of Virology, 2021, 95, e0040421.	3.4	34
28	The genetic architecture of plasma kynurenine includes cardiometabolic disease mechanisms associated with the SH2B3 gene. Scientific Reports, 2021, 11, 15652.	3.3	4
29	Whole-genome sequencing in diverse subjects identifies genetic correlates of leukocyte traits: The NHLBI TOPMed program. American Journal of Human Genetics, 2021, 108, 1836-1851.	6.2	14
30	Identification of Frailty Using a Claimsâ€Based Frailty Index in the CoreValve Studies: Findings from the EXTENDâ€FRAILTY Study. Journal of the American Heart Association, 2021, 10, e022150.	3.7	7
31	Metabolomic Profiles and Heart Failure Risk in Black Adults: Insights From the Jackson Heart Study. Circulation: Heart Failure, 2021, 14, e007275.	3.9	29
32	Soluble Urokinase Plasminogen Activator Receptor: Genetic Variation and Cardiovascular Disease Risk in Black Adults. Circulation Genomic and Precision Medicine, 2021, 14, CIRCGEN121003421.	3.6	7
33	Role of Frailty in Identifying Benefit From Transcatheter Versus Surgical Aortic Valve Replacement. Circulation: Cardiovascular Quality and Outcomes, 2021, 14, .	2.2	14
34	Weight Loss Outcomes Among Early High Responders to Exenatide Treatment: A Randomized, Placebo Controlled Study in Overweight and Obese Women. Frontiers in Endocrinology, 2021, 12, 742873.	3.5	11
35	Genomics and transcriptomics landscapes associated to changes in insulin sensitivity in response to endurance exercise training. Scientific Reports, 2021, 11, 23314.	3.3	3
36	Perspective: Dietary Biomarkers of Intake and Exposureâ€"Exploration with Omics Approaches. Advances in Nutrition, 2020, 11, 200-215.	6.4	79

#	Article	IF	CITATIONS
37	Identification of 102 Correlations between Serum Metabolites and Habitual Diet in a Metabolomics Study of the Prostate, Lung, Colorectal, and Ovarian Cancer Trial. Journal of Nutrition, 2020, 150, 694-703.	2.9	27
38	Genetic deletion of <i>gpr27</i> alters acylcarnitine metabolism, insulin sensitivity, and glucose homeostasis in zebrafish. FASEB Journal, 2020, 34, 1546-1557.	0.5	13
39	Metabolomic signatures of cardiac remodelling and heart failure risk in the community. ESC Heart Failure, 2020, 7, 3707-3715.	3.1	20
40	The choline transporter Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial function. Nature Communications, 2020, 11, 3479.	12.8	43
41	Circulating testican-2 is a podocyte-derived marker of kidney health. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25026-25035.	7.1	19
42	Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nature Genetics, 2020, 52, 969-983.	21.4	146
43	Comparison of Proteomic Assessment Methods in Multiple Cohort Studies. Proteomics, 2020, 20, e1900278.	2.2	103
44	EDEM3 Modulates Plasma Triglyceride Level through Its Regulation of LRP1 Expression. IScience, 2020, 23, 100973.	4.1	8
45	Aptamer-Based Proteomic Platform Identifies Novel Protein Predictors of Incident Heart Failure and Echocardiographic Traits. Circulation: Heart Failure, 2020, 13, e006749.	3.9	26
46	Metabolomics and Proteomics in Type 2 Diabetes. Circulation Research, 2020, 126, 1613-1627.	4.5	81
47	Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell, 2020, 181, 1464-1474.	28.9	147
48	Omics and Cardiometabolic Disease Risk Prediction. Annual Review of Medicine, 2020, 71, 163-175.	12.2	19
49	Predictive Accuracy of a Polygenic Risk Score Compared With a Clinical Risk Score for Incident Coronary Heart Disease. JAMA - Journal of the American Medical Association, 2020, 323, 627.	7.4	234
50	Metabolomics reveals the impact of Type 2 diabetes on local muscle and vascular responses to ischemic stress. Clinical Science, 2020, 134, 2369-2379.	4.3	7
51	Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. Journal of Clinical Investigation, 2020, 130, 1513-1526.	8.2	75
52	Proteomic and Metabolomic Correlates of Healthy Dietary Patterns: The Framingham Heart Study. Nutrients, 2020, 12, 1476.	4.1	46
53	SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms. JCI Insight, 2019, 4, .	5.0	137
54	Metabolite Profiles of Incident Diabetes and Heterogeneity of Treatment Effect in the Diabetes Prevention Program. Diabetes, 2019, 68, 2337-2349.	0.6	22

#	Article	IF	Citations
55	Emerging Affinity Reagents for High Throughput Proteomics. Circulation, 2019, 140, 1610-1612.	1.6	13
56	Induction of metabolic quiescence defines the transitional to follicular B cell switch. Science Signaling, 2019, 12, .	3.6	35
57	Succinate links atrial dysfunction and cardioembolic stroke. Neurology, 2019, 92, e802-e810.	1.1	20
58	Association of Dimethylguanidino Valeric Acid With Partial Resistance to Metabolic Health Benefits of Regular Exercise. JAMA Cardiology, 2019, 4, 636.	6.1	37
59	Intramuscular administration of hexachloroplatinate reverses cyanide-induced metabolic derangements and counteracts severe cyanide poisoning. FASEB BioAdvances, 2019, 1, 81-92.	2.4	17
60	Accelerating Biomarker Discovery Through Electronic Health Records, Automated Biobanking, and Proteomics. Journal of the American College of Cardiology, 2019, 73, 2195-2205.	2.8	35
61	Activin type II receptor signaling in cardiac aging and heart failure. Science Translational Medicine, 2019, 11, .	12.4	95
62	Proteomics Profiling and Risk of Newâ€Onset Atrial Fibrillation: Framingham Heart Study. Journal of the American Heart Association, 2019, 8, e010976.	3.7	42
63	Clinical Metabolomics Identifies Blood Serum Branched Chain Amino Acids as Potential Predictive Biomarkers for Chronic Graft vs. Host Disease. Frontiers in Oncology, 2019, 9, 141.	2.8	18
64	Profiling of the plasma proteome across different stages of human heart failure. Nature Communications, 2019, 10, 5830.	12.8	53
65	Human PAH is characterized by a pattern of lipid-related insulin resistance. JCI Insight, 2019, 4, .	5.0	69
66	A Role for Branched-Chain Amino Acids in the Pathophysiology of Diabetes: Using Data to Guide Discovery. Clinical Chemistry, 2018, 64, 1250-1251.	3.2	3
67	Plasma Metabolite Profiles in Response to Chronic Exercise. Medicine and Science in Sports and Exercise, 2018, 50, 1480-1486.	0.4	30
68	Association of branchedâ€chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer's disease: A prospective study in eight cohorts. Alzheimer's and Dementia, 2018, 14, 723-733.	0.8	182
69	Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose. Diabetologia, 2018, 61, 1315-1324.	6.3	93
70	Cardiovascular Risk Beyond Low-Density Lipoprotein Cholesterol. Journal of the American College of Cardiology, 2018, 71, 633-635.	2.8	7
71	Genetic Architecture of the Cardiovascular Risk Proteome. Circulation, 2018, 137, 1158-1172.	1.6	64
72	Association of Acylcarnitines With Left Ventricular Remodeling in Patients With Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Replacement. JAMA Cardiology, 2018, 3, 242.	6.1	26

#	Article	IF	CITATIONS
73	Application of Large-Scale Aptamer-Based Proteomic Profiling to Planned Myocardial Infarctions. Circulation, 2018, 137, 1270-1277.	1.6	36
74	A novel network-based approach for discovering dynamic metabolic biomarkers in cardiovascular disease. PLoS ONE, 2018, 13, e0208953.	2.5	7
75	Depot-Specific Adipose Tissue Metabolite Profiles and Corresponding Changes Following Aerobic Exercise. Frontiers in Endocrinology, 2018, 9, 759.	3.5	7
76	Probing the Virtual Proteome to Identify Novel Disease Biomarkers. Circulation, 2018, 138, 2469-2481.	1.6	42
77	l-Alanine activates hepatic AMP-activated protein kinase and modulates systemic glucose metabolism. Molecular Metabolism, 2018, 17, 61-70.	6.5	33
78	Metabolic Effects of Betaine: A Randomized Clinical Trial of Betaine Supplementation in Prediabetes. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3038-3049.	3.6	30
79	Identification of specific metabolic pathways as druggable targets regulating the sensitivity to cyanide poisoning. PLoS ONE, 2018, 13, e0193889.	2.5	12
80	A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. European Respiratory Journal, 2018, 51, 1702638.	6.7	183
81	Cisplatin Analogs Confer Protection against Cyanide Poisoning. Cell Chemical Biology, 2017, 24, 565-575.e4.	5.2	17
82	Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease. Circulation, 2017, 135, 1651-1664.	1.6	136
83	Activation of IRF1 in Human Adipocytes Leads to Phenotypes Associated with Metabolic Disease. Stem Cell Reports, 2017, 8, 1164-1173.	4.8	19
84	Plasma metabolite profiles, cellular cholesterol efflux, and non-traditional cardiovascular risk in patients with CKD. Journal of Molecular and Cellular Cardiology, 2017, 112, 114-122.	1.9	31
85	Association of amine biomarkers with incident dementia and Alzheimer's disease in the Framingham Study. Alzheimer's and Dementia, 2017, 13, 1327-1336.	0.8	93
86	Urinary metabolites along with common and rareÂgenetic variations are associated with incidentÂchronic kidney disease. Kidney International, 2017, 91, 1426-1435.	5.2	49
87	Activation of Inflammatory and Pro-Thrombotic Pathways in Acute Stress Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2017, 4, 49.	2.4	18
88	Amino Acid Signatures to Evaluate the Beneficial Effects of Weight Loss. International Journal of Endocrinology, 2017, 2017, 1-12.	1.5	25
89	Metabolite profiling identifies anandamide as a biomarker of nonalcoholic steatohepatitis. JCI Insight, 2017, 2, .	5.0	62
90	Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes. Journal of Clinical Investigation, 2017, 127, 4394-4402.	8.2	115

#	Article	lF	CITATIONS
91	Metabolomic Profiles of Body Mass Index in the Framingham Heart Study Reveal Distinct Cardiometabolic Phenotypes. PLoS ONE, 2016, 11, e0148361.	2.5	155
92	Integrative Analysis of PRKAG2 Cardiomyopathy iPS and Microtissue Models Identifies AMPK as a Regulator of Metabolism, Survival, and Fibrosis. Cell Reports, 2016, 17, 3292-3304.	6.4	73
93	The Emerging Role of Metabolomics inÂtheÂDiagnosis and Prognosis of Cardiovascular Disease. Journal of the American College of Cardiology, 2016, 68, 2850-2870.	2.8	259
94	Multimarker Risk Stratification in Patients With Acute Myocardial Infarction. Journal of the American Heart Association, 2016, 5, .	3.7	100
95	Metabolomic Profiling in Relation to New-Onset Atrial Fibrillation (from the Framingham Heart) Tj ETQq $1\ 1\ 0.7843$	14 rgBT /0 1.6	Oyerlock 10
96	Aptamer-Based Proteomic Profiling Reveals Novel Candidate Biomarkers and Pathways in Cardiovascular Disease. Circulation, 2016, 134, 270-285.	1.6	172
97	A countermeasure development pipeline. Annals of the New York Academy of Sciences, 2016, 1378, 58-67.	3.8	3
98	The Prospects for Cardiovascular Proteomics. JAMA Cardiology, 2016, 1, 245.	6.1	4
99	An exome array study of the plasma metabolome. Nature Communications, 2016, 7, 12360.	12.8	69
100	A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids. Food and Nutrition Research, 2016, 60, 28592.	2.6	13
101	Metabolomics of Chronic Kidney Disease Progression: A Case-Control Analysis in the Chronic Renal Insufficiency Cohort Study. American Journal of Nephrology, 2016, 43, 366-374.	3.1	62
102	Metabolite Profiles Predict Acute Kidney Injury and Mortality in Patients Undergoing Transcatheter Aortic Valve Replacement. Journal of the American Heart Association, 2016, 5, e002712.	3.7	35
103	Metabolic Profiling of Right Ventricular-Pulmonary Vascular Function Reveals Circulating Biomarkers of Pulmonary Hypertension. Journal of the American College of Cardiology, 2016, 67, 174-189.	2.8	79
104	Metabolite Profiles of Diabetes Incidence and Intervention Response in the Diabetes Prevention Program. Diabetes, 2016, 65, 1424-1433.	0.6	101
105	Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits. Cell Metabolism, 2015, 22, 4-11.	16.2	345
106	Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. Cancer Cell, 2015, 28, 773-784.	16.8	327
107	PTPMT1 Inhibition Lowers Glucose through Succinate Dehydrogenase Phosphorylation. Cell Reports, 2015, 10, 694-701.	6.4	61
108	Genetic Architecture of Insulin Resistance in the Mouse. Cell Metabolism, 2015, 21, 334-347.	16.2	196

#	Article	IF	Citations
109	Metabolite Profiling and Cardiovascular Event Risk. Circulation, 2015, 131, 774-785.	1.6	547
110	Dimethylglycine Deficiency and the Development of Diabetes. Diabetes, 2015, 64, 3010-3016.	0.6	61
111	Multiplexed, Quantitative Workflow for Sensitive Biomarker Discovery in Plasma Yields Novel Candidates for Early Myocardial Injury. Molecular and Cellular Proteomics, 2015, 14, 2375-2393.	3.8	175
112	Distinct metabolomic signatures are associated with longevity in humans. Nature Communications, 2015, 6, 6791.	12.8	120
113	Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nature Medicine, 2015, 21, 1290-1297.	30.7	214
114	The genetic architecture of NAFLD among inbred strains of mice. ELife, 2015, 4, e05607.	6.0	96
115	Design, methods, baseline characteristics and interim results of the Catheter Sampled Blood Archive in Cardiovascular Diseases (CASABLANCA) study. IJC Metabolic & Endocrine, 2014, 5, 11-18.	0.5	19
116	\hat{l}^2 -Aminoisobutyric Acid Induces Browning of White Fat and Hepatic \hat{l}^2 -Oxidation and Is Inversely Correlated with Cardiometabolic Risk Factors. Cell Metabolism, 2014, 19, 96-108.	16.2	489
117	Metabolite Traits and Genetic Risk Provide Complementary Information for the Prediction of Future Type 2 Diabetes. Diabetes Care, 2014, 37, 2508-2514.	8.6	87
118	Increases in Myocardial Workload Induced by Rapid Atrial Pacing Trigger Alterations in Global Metabolism. PLoS ONE, 2014, 9, e99058.	2.5	7
119	Pharmacological Inhibition of a MicroRNA Family in Nonhuman Primates by a Seed-Targeting 8-Mer AntimiR. Science Translational Medicine, 2013, 5, 212ra162.	12.4	109
120	Toward New Biomarkers of Cardiometabolic Diseases. Cell Metabolism, 2013, 18, 43-50.	16.2	75
121	A Genome-wide Association Study of the Human Metabolome in a Community-Based Cohort. Cell Metabolism, 2013, 18, 130-143.	16.2	274
122	Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell, 2013, 153, 828-839.	28.9	791
123	A Combined Epidemiologic and Metabolomic Approach Improves CKD Prediction. Journal of the American Society of Nephrology: JASN, 2013, 24, 1330-1338.	6.1	233
124	2-Aminoadipic acid is a biomarker for diabetes risk. Journal of Clinical Investigation, 2013, 123, 4309-4317.	8.2	397
125	Anthranilic acid and 3â€hydroxyanthranilic acid, but not kynurenic acid, are associated with plasma pyridoxalâ€5 phosphate levels. FASEB Journal, 2013, 27, 1077.21.	0.5	0
126	Metabolite Profiling Identifies Pathways Associated With Metabolic Risk in Humans. Circulation, 2012, 125, 2222-2231.	1.6	514

#	Article	IF	CITATIONS
127	Metabolomics and Cardiovascular Biomarker Discovery. Clinical Chemistry, 2012, 58, 139-147.	3.2	190
128	Targeted Metabolomics. Current Protocols in Molecular Biology, 2012, 98, Unit 30.2.1-24.	2.9	402
129	A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nature Biotechnology, 2011, 29, 635-643.	17.5	229
130	Metabolite profiles and the risk of developing diabetes. Nature Medicine, 2011, 17, 448-453.	30.7	2,586
131	Two Roads Diverge: Weight Loss Interventions and Circulating Amino Acids. Science Translational Medicine, 2011, 3, 80ps15.	12.4	7
132	Status and Prospects for Discovery and Verification of New Biomarkers of Cardiovascular Disease by Proteomics. Circulation Research, 2011, 109, 463-474.	4.5	66
133	Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. Journal of Clinical Investigation, 2011, 121, 1402-1411.	8.2	537
134	Conserved Gene Regulatory Mechanisms Controlling Cholesterol and Fat. FASEB Journal, 2011, 25, 193.1.	0.5	0
135	Metabolic Signatures of Exercise in Human Plasma. Science Translational Medicine, 2010, 2, 33ra37.	12.4	337
136	Integration of Proteomic-Based Tools for Improved Biomarkers of Myocardial Injury. Clinical Chemistry, 2010, 56, 194-201.	3.2	40
137	Pharmacological inhibition of BLT1 diminishes early abdominal aneurysm formation. Atherosclerosis, 2010, 210, 107-113.	0.8	25
138	New Antibody Assays for Cardiovascular Disease: Future Tools for the Clinical Chemist?. Clinical Chemistry, 2009, 55, 404-406.	3.2	2
139	The search for new cardiovascular biomarkers. Nature, 2008, 451, 949-952.	27.8	298
140	Challenges in translating plasma proteomics from bench to bedside: update from the NHLBI Clinical Proteomics Programs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L16-L22.	2.9	73
141	A functional annotation of subproteomes in human plasma. Proteomics, 2005, 5, 3506-3519.	2.2	82
142	HMG-CoA Reductase Inhibitor Modulates Monocyte–Endothelial Cell Interaction Under Physiological Flow Conditions In Vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1165-1171.	2.4	179
143	Câ€C and Câ€Xâ€C Chemokines Trigger Firm Adhesion of Monocytes to Vascular Endothelium under Flow Conditions ^a . Annals of the New York Academy of Sciences, 2000, 902, 288-293.	3.8	46
144	MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature, 1999, 398, 718-723.	27.8	1,161

#	Article	IF	CITATIONS
145	Adhesion of Memory Lymphocytes to Vascular Cell Adhesion Molecule-1–Transduced Human Vascular Endothelial Cells Under Simulated Physiological Flow Conditions In Vitro. Circulation Research, 1996, 79, 1205-1215.	4.5	47